卵巢癌是女性生殖系统中最为致命的恶性肿瘤之一,其早期诊断手段有限,导致70%以上的患者在确诊时已进入晚期阶
同源重组修复(homologous recombination repair, HR)是DNA双链断裂(double strand break, DSB)修复的重要途径之一。RAD51作为HR通路中的关键蛋白,其表达水平对癌细胞的生存及化疗药物的疗效具有重要影
姜黄素(curcumin),又称姜黄色素或酸性黄,是从姜科植物如姜黄、莪术、芥末、咖喱、郁金等的根茎中提取的一种天然酚类抗氧化剂。其化学名称为(1E, 6E)-1,7-双(4-羟基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮,主链为不饱和脂族及芳香族基团,化学式为C21H20O6,相对分子质量为368.380。姜黄素是常用的调料、食用色素和传统中
PEO1卵巢癌细胞系购于中国科学院典型培养物保藏委员会。将PEO1细胞用含10%胎牛血清和1%青霉素和链霉素的高糖DMEM培养基于37 ℃、5% CO2、饱和湿度细胞培养箱中培养。尼拉帕利和姜黄素均购于Selleck生物科技有限公司。尼拉帕利在使用前用二甲基亚砜(dimethyl sulfoxide, DMSO)配制成100 mmol·
将PEO1细胞以每孔2×1
将PEO1细胞以每孔2×1
将PEO1细胞以每孔5×1
将PEO1细胞以每孔2×1
将PEO1细胞以每孔2×1
将PEO1细胞以每孔2×1
为了评估尼拉帕利和姜黄素对PEO1细胞活性的抑制效果,使用不同浓度的尼拉帕利和姜黄素分别处理细胞,检测细胞活性并绘制药物剂量-效应曲线。图中虚线表示细胞活性为50%的参考线,细胞活性曲线与虚线的交点为药物对PEO1细胞的IC50值。结果显示,尼拉帕利的IC50值为(1.995±0.338 4)nmol·

图1 CCK8检测尼拉帕利(A)及姜黄素(B)的IC50值
Fig.1 Determination of IC50 for niraparib (A) and curcumin (B) using CCK8 assay
为了进一步探究尼拉帕利与姜黄素联合用药的效果,通过计算CI值来评估两药合用是否具有协同效应。根据尼拉帕利和姜黄素的IC₅₀值,分别选择尼拉帕利浓度为0、1、2、3、4 nmol·L⁻¹,姜黄素浓度为0、4、8、12、16 μmol·L⁻¹进行实验。结果显示,尼拉帕利与姜黄素均能以浓度依赖性的方式抑制PEO1细胞的活力;与单用尼拉帕利相比,两药联用时细胞活力显著降低,且所有浓度组合的CI值均<1(

图2 姜黄素协同增加PEO1细胞对尼拉帕利药物敏感性(n=6;
Fig.2 Curcumin synergistically enhances the drug sensitivity of PEO1 to niraparib (n=6;
为进一步研究尼拉帕利与姜黄素联合用药对卵巢癌细胞系克隆形成能力的影响,进行了平板克隆实验。结果显示,与单用尼拉帕利组相比,尼拉帕利+姜黄素组细胞克隆数显著减少(P<0.001)(

图3 1 nmol·
Fig.3 Effects of 1 nmol·

图4 2 nmol·
Fig.4 Effects of 2 nmol·
RAD51 foci是HR通路的关键标志物。免疫荧光结果显示,尼拉帕利和姜黄素单独处理PEO1细胞后,RAD51 foci的数量均呈现逐渐减少的趋势;与单用尼拉帕利组相比,尼拉帕利+姜黄素组RAD51 foci数量显著减少(P<0.001)(

图5 尼拉帕利和姜黄素单用及合用对RAD51荧光表达的影响(n=3;
Fig.5 Effects of niraparib and curcumin both alone and in combination on the fluorescent expression of RAD51 (n=3;

图6 尼拉帕利和姜黄素单用及合用对RAD51蛋白表达的影响(n=3;
Fig.6 The effects of niraparib and curcumin both alone and in combination on RAD51 protein expression (n=3;
卵巢癌是女性生殖系统中最致命的肿瘤之一,由于其早期症状不明显,大多数患者在确诊时已进展至晚
RAD51是HR通路中的关键蛋白,在DSB修复过程中,BRCA1被招募至断裂位点促进末端重组,并通过PALB2及其关联的BRCA2加载中心重组酶RAD51,从而启动HR修
然而,本研究仍存在一些局限性。首先,研究仅基于一种卵巢癌细胞系进行体外实验,缺乏更广泛的细胞系验证,且未开展动物实验以进一步模拟体内药物反应,从而为临床应用提供更可靠的支持。未来研究将进一步在不同卵巢癌细胞系及动物模型中评估姜黄素联合尼拉帕利的疗效。其次,尽管本研究揭示了姜黄素可通过抑制RAD51蛋白表达增强尼拉帕利敏感性的现象,但其具体分子机制尚未完全阐明。已有研究表明,姜黄素可通过调控细胞周期、诱导细胞凋亡及抑制肿瘤侵袭和转移等多种信号通路发挥抗癌作
综上所述,姜黄素可通过抑制HR通路增强卵巢癌细胞对尼拉帕利的敏感性,为两药联合应用提供了理论依据,并为开发新的卵巢癌治疗方法提供了新思路。这一发现也可能为其他类型肿瘤的治疗提供借鉴。未来的研究应进一步探索姜黄素在肿瘤治疗中的其他潜在机制,结合多种细胞系和动物模型的验证,并开展临床试验和真实世界研究,以期为患者提供更有效、更安全的治疗方案。
参考文献
MOUFARRIJ S, DANDAPANI M, ARTHOFER E, et al. Epigenetic therapy for ovarian cancer: promise and progress [J]. Clin Epigenetics, 2019, 11(1): 7. DOI: 10.1186/s13148-018-0602-0. [百度学术]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024 [J]. CA A Cancer J Clinicians, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820. [百度学术]
XIAO Y N, BI M Y, GUO H Y, et al. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis [J]. EBioMedicine, 2022, 79: 104001. DOI: 10.1016/j.ebiom.2022.104001. [百度学术]
郑楠, 唐均, 任晓梅. 1990至2019年中国女性生殖系统常见恶性肿瘤疾病负担变化趋势及预测分析[J]. 中国医学科学院学报, 2024, 46(1): 25-32. DOI: 10.3881/j.issn.1000-503X.15801. [百度学术]
LI X, HEYER W D. Homologous recombination in DNA repair and DNA damage tolerance [J]. Cell Res, 2008, 18(1): 99-113. DOI: 10.1038/cr.2008.1. [百度学术]
ZHOU Q, HUANG J Z, ZHANG C, et al. The bromodomain containing protein BRD-9 orchestrates RAD51-RAD54 complex formation and regulates homologous recombination-mediated repair [J]. Nat Commun, 2020, 11(1): 2639. DOI: 10.1038/s41467-020-16443-x. [百度学术]
GONZÁLEZ-MARTÍN A, POTHURI B, VERGOTE I, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer [J]. N Engl J Med, 2019, 381(25): 2391-2402. DOI: 10.1056/NEJMoa1910962. [百度学术]
WU Y S, XU S L, CHENG S S, et al. Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status [J]. J Ovarian Res, 2023, 16(1): 6. DOI: 10.1186/s13048-023-01094-5. [百度学术]
KIM C, WANG X D, YU Y H. PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response [J]. eLife, 2020, 9: e60637. DOI: 10.7554/eLife.60637. [百度学术]
KUZMINOV A. Single-strand interruptions in replicating chromosomes cause double-strand breaks [J]. Proc Natl Acad Sci USA, 2001, 98(15): 8241-8246. DOI: 10.1073/pnas.131009198. [百度学术]
KONSTANTINOPOULOS P A, CECCALDI R, SHAPIRO G I, et al. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer [J]. Cancer Discov, 2015, 5(11): 1137-1154. DOI: 10.1158/2159-8290.CD-15-0714. [百度学术]
DEA S. PARP and PARG inhibitors in cancer treatment [J]. Genes Dev, 2020, 34(5/6): 360-394. DOI: 10.1101/gad.334516.119. [百度学术]
MEKONNEN N, YANG H, SHIN Y K. Homologous recombination deficiency in ovarian, breast, colorectal, pancreatic, non-small cell lung and prostate cancers, and the mechanisms of resistance to PARP inhibitors [J]. Front Oncol, 2022, 12: 880643. DOI: 10.3389/fonc.2022.880643. [百度学术]
KOTHA R R, LUTHRIA D L. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects [J]. Molecules, 2019, 24(16): 2930. DOI: 10.3390/molecules24162930. [百度学术]
HOWELLS L M, IWUJI C O O, IRVING G R B, et al. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial [J]. J Nutr, 2019, 149(7): 1133-1139. DOI: 10.1093/jn/nxz029. [百度学术]
GIORDANO A, TOMMONARO G. Curcumin and cancer [J]. Nutrients, 2019, 11(10): E2376. DOI: 10.3390/nu11102376. [百度学术]
WENG W H, GOEL A. Curcumin and colorectal cancer: an update and current perspective on this natural medicine [J]. Semin Cancer Biol, 2022, 80: 73-86. DOI: 10.1016/j.semcancer.2020.02.011. [百度学术]
FABIANOWSKA-MAJEWSKA K, KAUFMAN-SZYMCZYK A, SZYMANSKA-KOLBA A, et al. Curcumin from turmeric rhizome: a potential modulator of DNA methylation machinery in breast cancer inhibition [J]. Nutrients, 2021, 13(2): 332. DOI: 10.3390/nu13020332. [百度学术]
ABADI A J, MIRZAEI S, MAHABADY M K, et al. Curcumin and its derivatives in cancer therapy: potentiating antitumor activity of cisplatin and reducing side effects [J]. Phytother Res, 2022, 36(1): 189-213. DOI: 10.1002/ptr.7305. [百度学术]
CHEN B, ZHANG Y Z, WANG Y, et al. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression [J]. J Steroid Biochem Mol Biol, 2014, 143: 11-18. DOI: 10.1016/j.jsbmb.2014.01.009. [百度学术]
BHATIA M, BHALERAO M, CRUZ-MARTINS N, et al. Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways [J]. Phytother Res, 2021, 35(9): 4913-4929. DOI: 10.1002/ptr.7121. [百度学术]
ROETT M A, EVANS P. Ovarian cancer: an overview [J]. Am Fam Physician, 2009, 80(6): 609-616. [百度学术]
ESSEL K G, MOORE K N. Niraparib for the treatment of ovarian cancer [J]. Expert Rev Anticancer Ther, 2018, 18(8): 727-733. DOI: 10.1080/14737140.2018.1490180. [百度学术]
JIANG X, LI X Y, LI W H, et al. PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms [J]. J Cell Mol Med, 2019, 23(4): 2303-2313. DOI: 10.1111/jcmm.14133. [百度学术]
FOO T K, XIA B. BRCA1-dependent and independent recruitment of PALB2-BRCA2-RAD51 in the DNA damage response and cancer [J]. Cancer Res, 2022, 82(18): 3191-3197. DOI: 10.1158/0008-5472.CAN-22-1535. [百度学术]
WANG L, WANG C, TAO Z, et al. Curcumin derivative WZ35 inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in breast cancer [J]. J Exp Clin Cancer Res, 2019, 38(1): 460. DOI: 10.1186/s13046-019-1424-4. [百度学术]
PASSOS C L A, POLINATI R M, FERREIRA C, et al. Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells [J]. Sci Rep, 2023, 13(1): 13446. DOI: 10.1038/s41598-023-40535-5. [百度学术]