摘要
多腺苷二磷酸核糖聚合酶抑制剂(PARPi)是一种十分有效的卵巢癌靶向治疗手段。已有多种PARPi被批准用于卵巢癌一线治疗和复发后的维持治疗。尽管PARPi应用前景广阔,但耐药问题十分突出。近年来,PARPi的耐药机制及克服耐药的策略已成为国内外研究热点,本文综述了PARPi治疗卵巢癌的最新进展及其耐药机制,旨在为扩大PARPi的临床应用提供思路和参考。
卵巢癌(ovarian cancer)是致死率最高的妇科恶性肿瘤,且每年新增确诊病例和死亡病例不断升
PARP家族酶通过ADP核糖基化(ADP-ribosylation)反应,在DNA损伤修复、基因表达调控及细胞凋亡等过程中发挥关键作用。聚ADP-核糖基化(poly ADP-ribosylation, PARylation)是一种特定的ADP-核糖基化形式,指的是PARP将PAR链共价连接至核蛋白上。在PARP家族中,PARP1是主导酶,其活性约占DNA损伤诱导的PARylation反应的80%。在DNA损伤响应中,PARP1迅速定位至单链DNA断裂(single stand break, SSB)和双链DNA断裂(double strand break, DSB)位点,并在与单链DNA(single-stranded DNA, ssDNA)结合后通过PARylation修饰自身及其他蛋白,进而招募DNA修复相关因
大多数卵巢癌患者具有高度不稳定的基因组,表现为以BRCA1/2等基因突变介导的HRD状态。基因组大数据分析显示,约10%的卵巢癌患者携带BRCA基因突变,该突变可导致HR障碍,PARPi进一步通过捕获PARP并抑制其活性,导致SSB修复过程受阻。当BRCA蛋白功能缺陷时,HR也会受阻,NHEJ难以维持损伤修复过程,导致基因组不稳定,引发细胞周期阻滞和细胞凋亡。因此,BRCA基因突变成为PARPi治疗卵巢癌的一个重要预测因
PARPi耐药具有多种分子机制,通过诱导HRD或靶向HR基因的策略诱发合成致死,可以提高PARPi的疗
多项研究表明,一些肿瘤细胞对PARPi产生耐药是由于某些HR基因的遗传变异或表观遗传修饰。遗传变异方面,如在PARPi耐药细胞中,BRCA1/2、RAD51C/D突变肿瘤细胞发生二级突变(secondary mutation),使得上述基因再次翻译,恢复由PARPi损害的DNA损伤修复能
多项研究表明,PARP功能异常与PARPi耐药密切相关。有研究显示,抑制PI3K可增加DNA损伤标志——PARylation与γ-H2AX的水平,但减少Rad51焦点的形成,PI3K抑制剂与奥拉帕利联合可显著抑制肿瘤生
DNA复制稳定性增强是导致PARPi耐药的重要原因之一。在PARPi耐药的BRCA1/2缺陷细胞中存在复制叉保护和DNA复制应激,去乙酰化酶USP1直接与复制叉结合并稳定其结构,从而保护肿瘤细胞免受PARPi损
综上所述,PARPi耐药存在多种分子机制,确定与PARPi耐药相关的关键分子事件将有助于开发新的组合治疗方案,这对于改善卵巢癌患者的生存率至关重要。
如前所述,PARPi耐药与表观遗传、细胞周期、细胞信号转导等因素有关,目前克服PARPi耐药的相关研究主要集中在PARPi耐药机制及与卵巢癌其他疗法联合,并取得了一定的进展。
针对通过继发性遗传改变(如BRCA1/2或HR途径其他关键基因的继发突变)引起的PARPi耐药,与抑制HR的药物联合使用可能是增强抗肿瘤作用的有效策略。DNA聚合酶θ(DNA polymerase θ, POLθ或POLQ)是HR缺陷的合成致死酶,因此是HR缺陷肿瘤的候选靶点。2021年,D’Andrea团队通过高通量小分子筛选,发现抗生素新生霉素(novobiocin, NVB)是一种特异性POLQ抑制剂,可在体内外选择性杀死HR缺陷肿瘤细胞。NVB可直接与POLQ的ATP酶结构域结合,抑制其ATP酶活性并导致POLQ耗竭。在基因工程小鼠模型、异种移植物和患者来源的异种移植物(patient-derived xenograft, PDX)模型中均证实,NVB可抑制伴HR缺陷的乳腺肿瘤和卵巢肿瘤形成。研究结果表明,NVB可单独或与PARPi联合用于治疗HR缺陷肿瘤,在PARPi获得性耐药肿瘤中也有相应的治疗效
PARPs是一类能够利用NA
BRCA1的纯合子甲基化和完全沉默可诱导HR缺陷和PARPi敏感性,而在卵巢癌患者来源的PDX模型中观察到,BRCA1和RDA51启动子去甲基化可以促进HR功能恢复,从而产生PARPi耐
DNA损伤和复制压力会激活ATR/CHK1/WEE1信号通路,触发细胞周期阻滞、复制叉稳定和DNA修复,以保证DNA的准确复
PI3K/AKT/mTOR通路的抑制涉及通过下调BRCA/RAD51和增加DNA损伤来抑制HR。2019年的一项1b期临床试验采用PI3K抑制剂阿培利司(alpelisib)和奥拉帕利联合治疗,在铂耐药卵巢癌患者中显示出协同作用,28例复发上皮性卵巢癌患者中有10例获得部分缓
2019年,Synnöve Staff团队报道了一项关于既往接受过贝伐珠单抗或一线维持治疗使用过PARPi的复发性铂敏感卵巢癌患者使用尼拉帕利联合贝伐珠单抗的Ⅱ期临床研究,发现相比单药组,联合组患者PFS显著改
目前,研究已经发现导致PARPi耐药的几种基因功能丧失会增加细胞对电离辐射的敏感性。例如,PARG失活虽然不利于PARPi发挥抗肿瘤作用,但会导致肿瘤细胞对电离辐射的敏感性增加。类似的,53BP1-RIF1-REV7-shieldin或CST末端保护复合物组分的损失及PARP1的损失也已被证明可导致细胞对电离辐射的超敏反应。因此,对于因PARG、PARP1或DSB末端保护丧失而对PARPi产生获得性耐药的BRCA缺陷肿瘤患者,放射治疗可能是一种可行的选
在卵巢癌治疗中,PARPi与免疫检查点抑制剂(immune checkpoint inhibitor, ICI)联合使用可以增强免疫系统的抗肿瘤作用。PARPi通过诱导DNA损伤和肿瘤特异性抗原释放及上调程序性死亡手工配体-1(programmed death-ligand 1, PD-L1)表达,使肿瘤对PARPi联合ICI的易感性和疗效增
目前,由于卵巢癌缺乏有效的靶向治疗手段,其系统性治疗受到极大限制,而PARPi的发展提供了一种靶向治疗卵巢癌的有效策略。然而,目前PARPi的应用还需要解决许多问题:第一,相当一部分铂耐药患者应用PARPi的疗效不佳,是否可以联用其他药物治疗尚未知;第二,BRCA突变和HRD患者也可能对PARPi耐药,需要寻找新的有效的分子标志物;第三,PARPi的特异性和细胞毒性如何控制,目前批准上市的3种PARPi对正常细胞均有一定的毒性,如何规避毒副作用也是一大问题;最后,针对PARPi耐药目前已有多项基础研究结果,但是大部分联合方案仍处于早期临床试验阶段,需要进一步的探索和验证。期待未来出现更多更有效的分子标志物和针对不同耐药机制的治疗方案,为卵巢癌治疗带来更多的希望。未来的研究应注重耐药机制的多样性和动态性,开发新型治疗策略,加强个体化治疗方案的优化,并将研究成果转化为临床应用,以扩展PARPi的获益。
参考文献
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024 [J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820. [百度学术]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022 [J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006. [百度学术]
VAUGHAN S, COWARD J I, JrBAST R C, et al. Rethinking ovarian cancer: recommendations for improving outcomes [J]. Nat Rev Cancer, 2011, 11(10): 719-725. DOI: 10.1038/nrc3144. [百度学术]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI:10.3322/caac.21708. [百度学术]
MANGILI G, BERGAMINI A, TACCAGNI G, et al. Unraveling the two entities of endometrioid ovarian cancer: a single center clinical experience [J]. Gynecol Oncol, 2012, 126(3): 403-407. DOI: 10.1016/j.ygyno.2012.05.007. [百度学术]
GROEN R S, GERSHENSON D M, FADER A N. Updates and emerging therapies for rare epithelial ovarian cancers: one size no longer fits all [J]. Gynecol Oncol, 2015, 136(2): 373-383. DOI: 10.1016/j.ygyno.2014.11.078. [百度学术]
MIRZA M R, COLEMAN R L, GONZÁLEZ-MARTÍN A, et al. The forefront of ovarian cancer therapy: update on PARP inhibitors [J]. Ann Oncol, 2020, 31(9): 1148-1159. DOI:10.1016/j.annonc.2020.06.004. [百度学术]
CHAUDHURI ARAY, NUSSENZWEIG A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling [J]. Nat Rev Mol Cell Biol, 2017, 18(10): 610-621. DOI: 10.1038/nrm.2017.53. [百度学术]
CHEN C C, FENG W R, LIM P X, et al. Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer [J]. Annu Rev Cancer Biol, 2018, 2: 313-336. DOI: 10.1146/annurev-cancerbio-030617-050502. [百度学术]
SCULLY R, PANDAY A, ELANGO R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells [J]. Nat Rev Mol Cell Biol, 2019, 20(11): 698-714. DOI: 10.1038/s41580-019-0152-0. [百度学术]
LORD C J, ASHWORTH A. PARP inhibitors: snthetic lethality in the clinic [J]. Science, 2017, 355(6330): 1152-1158. DOI: 10.1126/science.aam7344. [百度学术]
POMMIER Y, HUANG S H, DAS B B, et al. 284 differential trapping of PARP1 and PARP2 by clinical PARP inhibitors [J]. Eur J Cancer, 2012, 48: 87. DOI: 10.1016/S0959-8049(12)72082-8. [百度学术]
MATULONIS U A, SOOD A K, FALLOWFIELD L, et al. Ovarian cancer [J]. Nat Rev Dis Primers, 2016, 2: 16061. DOI:10.1038/nrdp.2016.61. [百度学术]
LEDERMANN J, HARTER P, GOURLEY C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial [J]. Lancet Oncol, 2014, 15(8): 852-861. DOI: 10.1016/S1470-2045(14)70228-1. [百度学术]
WIGGANS A J, CASS G K S, BRYANT A, et al. Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer [J]. Cochrane Database Syst Rev, 2015, 2015(5): CD007929. DOI: 10.1002/14651858.CD007929.pub3. [百度学术]
FARMER H, MCCABE N, LORD C J, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy [J]. Nature, 2005, 434(7035): 917-921. DOI: 10.1038/nature03445. [百度学术]
BRYANT H E, SCHULTZ N, THOMAS H D, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase [J]. Nature, 2005, 434(7035): 913-917. DOI: 10.1038/nature03443. [百度学术]
LI S Z. Inhibition of poly(ADP-ribose) polymerase in BRCA mutation carriers [J]. N Engl J Med, 2009, 361(17): 1707, authorreply 1707-authorreply1708. DOI: 10.1056/NEJMc091621. [百度学术]
DIAS M P, MOSER S C, GANESAN S, et al. Understanding and overcoming resistance to PARP inhibitors in cancer therapy [J]. Nat Rev Clin Oncol, 2021, 18(12): 773-791. DOI: 10.1038/s41571-021-00532-x. [百度学术]
SCHETTINI F, GIUDICI F, BERNOCCHI O, et al. Poly (ADP-ribose) polymerase inhibitors in solid tumours: Systematic review and meta-analysis [J]. Eur J Cancer, 2021, 149: 134-152. DOI: 10.1016/j.ejca.2021.02.035. [百度学术]
PILIÉ P G, GAY C M, BYERS L A, et al. PARP inhibitors: extending benefit beyond BRCA-mutant cancers [J]. Clin Cancer Res, 2019, 25(13): 3759-3771. DOI: 10.1158/1078-0432.CCR-18-0968. [百度学术]
GONZÁLEZ-MARTÍN A, POTHURI B, VERGOTE I, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer [J]. N Engl J Med, 2019, 381(25): 2391-2402. DOI:10.1056/NEJMoa1910962. [百度学术]
LIU S N, DENG P, YU Z L, et al. CDC7 inhibition potentiates antitumor efficacy of PARP inhibitor in advanced ovarian cancer [J]. Adv Sci (Weinh), 2024, 11(45): e2403782. DOI:10.1002/advs.202403782. [百度学术]
MIRZA M R, MONK B J, HERRSTEDT J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer [J]. N Engl J Med, 2016, 375(22): 2154-2164. DOI:10.1056/NEJMoa1611310. [百度学术]
SUN C Y, YIN J, FANG Y, et al. BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency [J]. Cancer Cell, 2018, 33(3): 401-416.e8. DOI: 10.1016/j.ccell.2018.01.019. [百度学术]
DU Y, YAMAGUCHI H, WEI Y K, et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors [J]. Nat Med, 2016, 22(2): 194-201. DOI:10.1038/nm.4032. [百度学术]
LIM K S, LI H, ROBERTS E A, et al. USP1 is required for replication fork protection in BRCA1-deficient tumors [J]. Mol Cell, 2018, 72(6): 925-941.e4. DOI: 10.1016/j.molcel.2018.10.045. [百度学术]
EDWARDS S L, BROUGH R, LORD C J, et al. Resistance to therapy caused by intragenic deletion in BRCA2 [J]. Nature, 2008, 451(7182): 1111-1115. DOI: 10.1038/nature06548. [百度学术]
JASPERS J E, KERSBERGEN A, BOON U, et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors [J]. Cancer Discov, 2013, 3(1): 68-81. DOI: 10.1158/2159-8290.CD-12-0049. [百度学术]
XU G T, ROSS CHAPMAN J, BRANDSMA I, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition [J]. Nature, 2015, 521(7553): 541-544. DOI:10.1038/nature14328. [百度学术]
HOU T Y, CAO Z Y, ZHANG J, et al. SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair [J]. Nucleic Acids Res, 2020, 48(6): 2982-3000. DOI: 10.1093/nar/gkaa006. [百度学术]
ZHOU Q, HUANG J Z, ZHANG C, et al. The bromodomain containing protein BRD-9 orchestrates RAD51-RAD54 complex formation and regulates homologous recombination-mediated repair [J]. Nat Commun, 2020, 11(1): 2639. DOI: 10.1038/s41467-020-16443-x. [百度学术]
TAN J H, ZHENG X, LI M C, et al. C/EBPβ promotes poly(ADP-ribose) polymerase inhibitor resistance by enhancing homologous recombination repair in high-grade serous ovarian cancer [J]. Oncogene, 2021, 40(22): 3845-3858. DOI:10.1038/s41388-021-01788-4. [百度学术]
JUVEKAR A, BURGA L N, HU H, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer [J]. Cancer Discov, 2012, 2(11): 1048-1063. DOI: 10.1158/2159-8290.CD-11-0336. [百度学术]
GOGOLA E, DUARTE A A, DE RUITER J R, et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality [J]. Cancer Cell, 2018, 33(6): 1078-1093.e12. DOI: 10.1016/j.ccell.2018.05.008. [百度学术]
FUJIMOTO M, TAKII R, TAKAKI E, et al. The HSF1-PARP13-PARP1 complex facilitates DNA repair and promotes mammary tumorigenesis [J]. Nat Commun, 2017, 8(1): 1638. DOI: 10.1038/s41467-017-01807-7. [百度学术]
ZHANG W, LIU B, WU W H, et al. Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer [J]. Clin Cancer Res, 2018, 24(3): 696-707. DOI:10.1158/1078-0432.CCR-17-1872. [百度学术]
CHABANON R M, MOREL D, EYCHENNE T, et al. PBRM1 deficiency confers synthetic lethality to DNA repair inhibitors in cancer [J]. Cancer Res, 2021, 81(11): 2888-2902. DOI:10.1158/0008-5472.CAN-21-0628. [百度学术]
KIM H, GEORGE E, RAGLAND R, et al. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models [J]. Clin Cancer Res, 2017, 23(12): 3097-3108. DOI: 10.1158/1078-0432.CCR-16-2273. [百度学术]
ZHOU J, GELOT C, PANTELIDOU C, et al. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors [J]. Nat Cancer, 2021, 2(6): 598-610. DOI: 10.1038/s43018-021-00203-x. [百度学术]
GABBASOV R, DANIEL BENRUBI I, O’BRIEN S W, et al. Targeted blockade of HSP90 impairs DNA-damage response proteins and increases the sensitivity of ovarian carcinoma cells to PARP inhibition [J]. Cancer Biol Ther, 2019, 20(7): 1035-1045. DOI: 10.1080/15384047.2019.1595279. [百度学术]
KONSTANTINOPOULOS P A, CHENG S C, SUPKO J G, et al. Combined PARP and HSP90 inhibition: preclinical and phase 1 evaluation in patients with advanced solid tumours [J]. Br J Cancer, 2022, 126(7): 1027-1036. DOI: 10.1038/s41416-021-01664-8. [百度学术]
KAMALETDINOVA T, FANAEI-KAHRANI Z, WANG Z Q. The enigmatic function of PARP1: from PARylation activity to PAR readers [J]. Cells, 2019, 8(12): 1625. DOI: 10.3390/cells8121625. [百度学术]
CHEN S H, YU X C. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies [J]. Sci Adv, 2019, 5(4): eaav4340. DOI: 10.1126/sciadv.aav4340. [百度学术]
NACARELLI T, FUKUMOTO T, ZUNDELL J A, et al. NAMPT inhibition suppresses cancer stem-like cells associated with therapy-induced senescence in ovarian cancer [J]. Cancer Res, 2020, 80(4): 890-900. DOI: 10.1158/0008-5472.CAN-19-2830. [百度学术]
SAURIOL S A, CARMONA E, UDASKIN M L, et al. Inhibition of nicotinamide dinucleotide salvage pathway counters acquired and intrinsic poly(ADP-ribose) polymerase inhibitor resistance in high-grade serous ovarian cancer [J]. Sci Rep, 2023, 13(1): 3334. DOI: 10.1038/s41598-023-30081-5. [百度学术]
KONDRASHOVA O, TOPP M, NESIC K, et al. Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma [J]. Nat Commun, 2018, 9(1): 3970. DOI: 10.1038/s41467-018-05564-z. [百度学术]
NESIC K, KONDRASHOVA O, HURLEY R M, et al. Acquired RAD51C promoter methylation loss causes PARP inhibitor resistance in high-grade serous ovarian carcinoma [J]. Cancer Res, 2021, 81(18): 4709-4722. DOI: 10.1158/0008-5472.CAN-21-0774. [百度学术]
PULLIAM N, FANG F, OZES A R, et al. An effective epigenetic-PARP inhibitor combination therapy for breast and ovarian cancers independent of BRCA mutations [J]. Clin Cancer Res, 2018, 24(13): 3163-3175. DOI: 10.1158/1078-0432.CCR-18-0204. [百度学术]
SHIM J I, RYU J Y, JEONG S Y, et al. Combination effect of poly (ADP-ribose) polymerase inhibitor and DNA demethylating agents for treatment of epithelial ovarian cancer [J]. Gynecol Oncol, 2022, 165(2): 270-280. DOI: 10.1016/j.ygyno.2022.03.005. [百度学术]
MINUCCI S, PELICCI P G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer [J]. Nat Rev Cancer, 2006, 6(1): 38-51. DOI: 10.1038/nrc1779. [百度学术]
BALCH C, FANG F, MATEI D E, et al. Minireview: epigenetic changes in ovarian cancer [J]. Endocrinology, 2009, 150(9): 4003-4011. DOI: 10.1210/en.2009-0404. [百度学术]
MODESITT S C, SILL M, HOFFMAN J S, et al. A phase Ⅱ study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study [J]. Gynecol Oncol, 2008, 109(2): 182-186. DOI: 10.1016/j.ygyno.2008.01.009. [百度学术]
GUPTA V G, HIRST J, PETERSEN S, et al. Entinostat, a selective HDAC1/2 inhibitor, potentiates the effects of olaparib in homologous recombination proficient ovarian cancer [J]. Gynecol Oncol, 2021, 162(1): 163-172. DOI: 10.1016/j.ygyno.2021.04.015. [百度学术]
KARAKASHEV S, ZHU H R, WU S, et al. CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity [J]. Nat Commun, 2018, 9(1): 631. DOI: 10.1038/s41467-018-03031-3. [百度学术]
KARAKASHEV S, FUKUMOTO T, ZHAO B, et al. EZH2 inhibition sensitizes CARM1-high, homologous recombination proficient ovarian cancers to PARP inhibition [J]. Cancer Cell, 2020, 37(2): 157-167.e6. DOI: 10.1016/j.ccell.2019.12.015. [百度学术]
GRALEWSKA P, GAJEK A, MARCZAK A, et al. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer [J]. J Hematol Oncol, 2020, 13(1): 39. DOI: 10.1186/s13045-020-00874-6. [百度学术]
GUPTA N, HUANG T T, HORIBATA S, et al. Cell cycle checkpoints and beyond: exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer [J]. Pharmacol Res, 2022, 178: 106162. DOI: 10.1016/j.phrs.2022. 106162. [百度学术]
GEORGE E, KIM H, RAGLAND R, et al. Targeting the ATR-Chk1 axis with PARP inhibition results in tumor regression in BRCA mutant models [J]. Gynecol Oncol, 2017, 145: 100. DOI: 10.1016/j.ygyno.2017.03.236. [百度学术]
KIM H, XU H N, GEORGE E, et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models [J]. Nat Commun, 2020, 11(1): 3726. DOI: 10.1038/s41467-020-17127-2. [百度学术]
MAHDI H, HAFEZ N, DOROSHOW D, et al. Ceralasertib-mediated ATR inhibition combined with olaparib in advanced cancers harboring DNA damage response and repair alterations (olaparib combinations) [J]. JCO Precis Oncol, 2021, 5: PO.20.00439. DOI: 10.1200/PO.20.00439. [百度学术]
SHAH P D, WETHINGTON S L, PAGAN C, et al. Combination ATR and PARP inhibitor (CAPRI): a phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer [J]. Gynecol Oncol, 2021, 163(2): 246-253. DOI: 10.1016/j.ygyno.2021.08.024. [百度学术]
BANERJEE S, STEWART J, PORTA N, et al. ATARI trial: ATR inhibitor in combination with olaparib in gynecological cancers with ARID1A loss or no loss (ENGOT/GYN1/NCRI) [J]. Int J Gynecol Cancer, 2021, 31(11): 1471-1475. DOI: 10.1136/ijgc-2021-002973. [百度学术]
WETHINGTON S L, SHAH P D, MARTIN L, et al. Combination ATR (ceralasertib) and PARP (olaparib) inhibitor (CAPRI) trial in acquired PARP inhibitor-resistant homologous recombination-deficient ovarian cancer [J]. Clin Cancer Res, 2023, 29(15): 2800-2807. DOI: 10.1158/1078-0432.CCR-22-2444. [百度学术]
DO K T, KOCHUPURAKKAL B, KELLAND S, et al. Phase 1 combination study of the CHK1 inhibitor prexasertib and the PARP inhibitor olaparib in high-grade serous ovarian cancer and other solid tumors [J]. Clin Cancer Res, 2021, 27(17): 4710-4716. DOI: 10.1158/1078-0432.CCR-21-1279. [百度学术]
FANG Y, MCGRAIL D J, SUN C Y, et al. Sequential therapy with PARP and WEE1 inhibitors minimizes toxicity while maintaining efficacy [J]. Cancer Cell, 2019, 35(6): 851-867.e7. DOI: 10.1016/j.ccell.2019.05.001. [百度学术]
SERRA V, WANG A T, CASTROVIEJO-BERMEJO M, et al. Identification of a molecularly-defined subset of breast and ovarian cancer models that respond to WEE1 or ATR inhibition, overcoming PARP inhibitor resistance [J]. Clin Cancer Res, 2022, 28(20): 4536-4550. DOI: 10.1158/1078-0432.CCR-22-0568. [百度学术]
RAINEY M D, QUINLAN A, CAZZANIGA C, et al. CDC7 kinase promotes MRE11 fork processing, modulating fork speed and chromosomal breakage [J]. EMBO Rep, 2020, 21(8): e48920. DOI: 10.15252/embr.201948920. [百度学术]
KONSTANTINOPOULOS P A, BARRY W T, BIRRER M, et al. Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial [J]. Lancet Oncol, 2019, 20(4): 570-580. DOI: 10.1016/S1470-2045(18)30905-7. [百度学术]
YAP T A, KRISTELEIT R, MICHALAREA V, et al. Phase Ⅰ trial of the PARP inhibitor olaparib and AKT inhibitor capivasertib in patients with BRCA1/2- and non- BRCA1/2-mutant cancers [J]. Cancer Discov, 2020, 10(10): 1528-1543. DOI:10.1158/2159-8290.CD-20-0163. [百度学术]
WESTIN S N, LABRIE M, LITTON J K, et al. Phase 1b dose expansion and translational analyses of olaparib in combination with capivasertib in recurrent endometrial, triple-negative breast, and ovarian cancer [J]. Clin Cancer Res, 2021, 27(23): 6354-6365. DOI: 10.1158/1078-0432.CCR-21-1656. [百度学术]
XU J, GAO Y, LUAN X T, et al. An effective AKT inhibitor-PARP inhibitor combination therapy for recurrent ovarian cancer [J]. Cancer Chemother Pharmacol, 2022, 89(5): 683-695. DOI: 10.1007/s00280-022-04403-9. [百度学术]
SUN C Y, FANG Y, YIN J, et al. Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers [J]. Sci Transl Med, 2017, 9(392): eaal5148. DOI: 10.1126/scitranslmed.aal5148. [百度学术]
VENA F, JIA R C, ESFANDIARI A, et al. MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models [J]. Oncotarget, 2018, 9(14): 11592-11603. DOI: 10.18632/oncotarget.24294. [百度学术]
MIRZA M R, LUNDQVIST E Å, BIRRER M J, et al. Niraparib plus bevacizumab versus niraparib alone for platinum-sensitive recurrent ovarian cancer (NSGO-AVANOVA2/ENGOT-ov24): a randomised, phase 2, superiority trial [J]. Lancet Oncol, 2019, 20(10): 1409-1419. DOI: 10.1016/S1470-2045(19)30515-7. [百度学术]
LHEUREUX S, OAKNIN A, GARG S, et al. EVOLVE: a multicenter open-label single-arm clinical and translational phase Ⅱ trial of cediranib plus olaparib for ovarian cancer after PARP inhibition progression [J]. Clin Cancer Res, 2020, 26(16): 4206-4215. DOI: 10.1158/1078-0432.CCR-19-4121. [百度学术]
BIZZARO F, NERINI I F, TAYLOR M A, et al. VEGF pathway inhibition potentiates PARP inhibitor efficacy in ovarian cancer independent of BRCA status [J]. J Hematol Oncol, 2021, 14(1): 186. DOI: 10.1186/s13045-021-01196-x. [百度学术]
BARCELLINI A, LOAP P, MURATA K, et al. PARP inhibitors in combination with radiotherapy: to do or not to do? [J]. Cancers (Basel), 2021, 13(21): 5380. DOI: 10.3390/cancers13215380. [百度学术]
PALLUZZI E, MARCHETTI C, CAPPUCCIO S, et al. Management of oligometastatic ovarian cancer recurrence during PARP inhibitor maintenance [J]. Int J Gynecol Cancer, 2022, 32(9): 1164-1170. DOI: 10.1136/ijgc-2022-003543. [百度学术]
MUSACCHIO L, CICALA C M, CAMARDA F, et al. Combining PARP inhibition and immune checkpoint blockade in ovarian cancer patients: a new perspective on the horizon? [J]. ESMO Open, 2022, 7(4): 100536. DOI: 10.1016/j.esmoop.2022. 100536. [百度学术]
KONSTANTINOPOULOS P A, MUNSTER P, FORERO-TOREZ A, et al. Topacio: Preliminary activity and safety in patients (pts) with platinum-resistant ovarian cancer (PROC) in a phase 1/2 study of niraparib in combination with pembrolizumab [J]. Gynecol Oncol, 2018, 149: 246. DOI: 10.1016/j.ygyno.2018.04.554. [百度学术]
DREW Y, DE JONGE M, HONG S H, et al. An open-label, phase Ⅱ basket study of olaparib and durvalumab (MEDIOLA): Results in germline BRCA-mutated (gBRCAm) platinum-sensitive relapsed (PSR) ovarian cancer (OC) [J]. Gynecol Oncol, 2018, 149: 246-247. DOI: 10.1016/j.ygyno.2018.04.555. [百度学术]
DING L Y, KIM H J, WANG Q W, et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer [J]. Cell Rep, 2018, 25(11): 2972-2980.e5. DOI: 10.1016/j.celrep.2018.11.054. [百度学术]
SHEN J F, ZHAO W, JU Z L, et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness [J]. Cancer Res, 2019, 79(2): 311-319. DOI:10.1158/0008-5472.CAN-18-1003. [百度学术]
KONSTANTINOPOULOS P A, WAGGONER S, VIDAL G A, et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma [J]. JAMA Oncol, 2019, 5(8): 1141-1149. DOI: 10.1001/jamaoncol.2019.1048. [百度学术]
YANG L, ZHANG Y Y, SHAN W W, et al. Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition [J]. Sci Transl Med, 2017, 9(400): eaal1645. DOI: 10.1126/scitranslmed.aal1645. [百度学术]
KARAKASHEV S, ZHU H R, YOKOYAMA Y, et al. BET bromodomain inhibition synergizes with PARP inhibitor in epithelial ovarian cancer [J]. Cell Rep, 2017, 21(12): 3398-3405. DOI: 10.1016/j.celrep.2017.11.095. [百度学术]
CHU Y Y, CHEN M K, WEI Y K, et al. Targeting the ALK-CDK9-Tyr19 kinase cascade sensitizes ovarian and breast tumors to PARP inhibition via destabilization of the P-TEFb complex [J]. Nat Cancer, 2022, 3(10): 1211-1227. DOI:10.1038/s43018-022-00438-2. [百度学术]
PATEL P S, ABRAHAM K J, GUTURI K K N, et al. RNF168 regulates R-loop resolution and genomic stability in BRCA1/2-deficient tumors [J]. J Clin Invest, 2021, 131(3): e140105. DOI: 10.1172/JCI140105. [百度学术]
ZONG D L, ADAM S, WANG Y F, et al. BRCA1 haploinsufficiency is masked by RNF168-mediated chromatin ubiquitylation [J]. Mol Cell, 2019, 73(6): 1267-1281.e7. DOI: 10.1016/j.molcel.2018.12.010. [百度学术]
ZHANG X D, YAO J, LI X R, et al. Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer [J]. Sci Adv, 2023, 9(29): eadf7195. DOI: 10.1126/sciadv.adf7195. [百度学术]