摘要
以宫颈癌、子宫内膜癌和卵巢癌为主的妇科肿瘤严重影响女性健康,预防和治疗妇科肿瘤是妇女医疗保健中的重要任务。随着免疫治疗和多腺苷二磷酸核糖聚合酶(PARP)抑制剂的应用,妇科肿瘤在治疗上取得了重大进展,但对于晚期和复发/转移性患者,其预后仍不乐观。目前,多线治疗后复发患者的治疗方式仍然有限,需要探索新的治疗方案,改善其预后。抗体偶联药物(ADC)兼具传统化疗药物的高活性和靶向药物的高选择性,既对肿瘤细胞具有较强的杀伤作用,又可以避免严重的全身毒性。基于合适的靶点选择,ADC可以提升治疗的有效性,逐渐成为近年来的研究热点。目前,ADC在妇科肿瘤中的应用虽取得了一些成果,但仍面临诸多挑战。双特异性ADC及ADC联合其他药物可能是未来治疗的新方向。本文对ADC在妇科肿瘤领域的应用进展进行了系统的综述。
以宫颈癌、子宫内膜癌和卵巢癌为主的妇科肿瘤是威胁女性健康的一大类疾病。2022年我国女性宫颈癌发病率为21.81/10万,死亡率为8.06/10万;子宫体肿瘤发病率为11.25/10万,死亡率为1.96/10万;卵巢癌发病率为8.84/10万,死亡率为4.73/10
抗体偶联药物(antibody-drug conjugate, ADC)是一种新兴的治疗药物。2000年,吉妥珠单抗(gemtuzumab ozogamicin)作为第一款ADC被批准用于白血病的治疗,随后ADC研究在肿瘤领域快速进展,尤其在乳腺癌、尿路上皮癌和多种血液系统肿瘤中取得了良好的治疗效果。随着对ADC机制的不断深入了解和技术的更新与突破,目前全球已有16种ADC上市,其中7种在中国获批(
商品名 | 通用名 | 靶点 | 适应证 | 获批情况 | 国内获批情况 |
---|---|---|---|---|---|
Mylotarg | 吉妥珠单抗(gemtuzumab ozogamicin) | CD33 | 急性髓系白血病 |
2000年首次获批 , 2010年撤市, 2017年再次获批 | 尚未获批 |
Zevalin | 替伊莫单抗(ibritumomab tiuxetan) | CD20 | B细胞淋巴瘤、滤泡性淋巴瘤 | 2002年获批 | 尚未获批 |
Adcetris | 维布妥昔单抗(brentuximab vedotin) | CD30 | 霍奇金淋巴瘤、间变性大细胞淋巴瘤 | 2011年获批 | 批准上市 |
Kadcyla | 恩美曲妥珠单抗(ado-trastuzumab emtansine) | HER2 | HER2阳性乳腺癌 | 2013年获批 | 批准上市 |
Besponsa | 奥加伊妥珠单抗(inotuzumab ozogamicin) | CD22 | 前体B细胞急性淋巴细胞白血病 | 2017年获批 | 批准上市 |
Lumoxiti | 帕西妥莫单抗(moxetumomab pasudotox) | CD22 | 成年复发性或难治性毛细胞白血病 | 2018年获批 | 尚未获批 |
Polivy | 维泊妥珠单抗(polatuzumab vedotin) | CD79b | 弥漫性大B细胞淋巴瘤 | 2019年获批 | 批准上市 |
Padcev | 维恩妥尤单抗(enfortumab vedotin) | Nectin-4 | 尿路上皮癌 | 2019年获批 | 尚未获批 |
Enhertu | 德曲妥珠单抗(trastuzumab deruxtecan) | HER2 | 乳腺癌、非小细胞肺癌、胃癌 | 2019年获批 | 批准上市 |
Trodelvy | 戈沙妥珠单抗(sacituzumab govitecan) | Trop2 | 三阴性乳腺癌 | 2020年获批 | 批准上市 |
Blenrep | 玛贝妥单抗(belantamab mafodotin) | BCMA | 多发性骨髓瘤 |
2020年获批, 2022年撤市 | 尚未获批 |
Akalux | 沙西妥昔单抗(cetuximab saratolacan) | EGFR | 不可切除的局部晚期或复发性头颈部肿瘤 | 2020年获批 | 尚未获批 |
Zynlonta | 泰朗妥昔单抗(loncastuximab tesirine) | CD19 | 复发性或难治性弥漫性大B细胞淋巴瘤 | 2021年获批 | 尚未获批 |
Aidixi | 维迪西妥单抗(disitamab vedotin) | HER2 | 胃癌、尿路上皮癌 | 2021年获批 | 批准上市 |
Tivdak | 替索单抗(tisotumab vedotin) | TF | 宫颈癌 | 2021年获批 | 尚未获批 |
Elahere | 索米妥昔单抗(mirvetuximab soravtansine) | FRα | FRα阳性、铂耐药成人上皮性卵巢癌、输卵管癌或原发性腹膜癌 | 2022年获批 | 尚未获批 |
注: 数据更新于2024年3月。
Note: The data was updated in March, 2024.
ADC主要由抗体(antibody)、连接子(linker)和载药(payload)组成,可通过特异性识别肿瘤表面抗原进入肿瘤细胞内部,并释放载药,杀伤肿瘤细胞(

图1 ADC的作用机制
Fig. 1 The mechanism of ADC
理想的ADC抗体应靶向仅在肿瘤组织中高表达、而在健康组织中低表达的肿瘤抗原。如人表皮生长因子受体2(human epidermal growth factor receptor 2, HER2)在肿瘤中的表达较正常细胞高100
抗体还应具有良好的亲和力,以实现与肿瘤抗原的结合,介导药物的内吞。目前的ADC主要基于IgG,尤其是具有较长血清半衰期的IgG1,其Fc片段具有高抗原亲和力,同时还具有抗体依赖性细胞介导的细胞毒性(antibody-dependent cell-mediated cytotoxicity, ADCC)、补体依赖性的细胞毒性(complement dependent cytotoxicity, CDC)和抗体依赖性细胞介导的吞噬作用(antibody-dependent cell-mediated phagocytosis, ADCP),可能产生额外的抗肿瘤作
理想的抗体还应具备较低的免疫原性,尽可能减轻免疫反应并延长抗体在循环中的存续时间。从第二代ADC开始,人源化或嵌合抗体已经基本取代了鼠源抗体,降低了免疫原性,减少了药物的副作用。
连接子将载药结合于单克隆抗体,并使载药随抗体递送至靶细胞。因此,理想的连接子需要连接足够数量的载药,在循环中保持稳定,以避免过早解偶联导致的全身脱靶毒性,抵达肿瘤细胞后则应高效释放载药,使其发挥细胞毒性。连接子分为不可裂解和可裂解两类。使用不可裂解连接子的ADC在被内吞至细胞后,抗体部分被溶酶体降解,释放药物。而可裂解连接子,如二硫化物和二肽连接子,对肿瘤细胞内的酸性pH、高谷胱甘肽水平或蛋白酶作用具有敏感性,可较早准确释放细胞毒性药物,提高载药释放效率,但也可能因过早释放导致脱靶毒性。此时裂解释放的载药不含抗体降解产生的带电荷氨基酸残基,可以穿过细胞膜,对邻近肿瘤细胞产生“旁观者效应”(
应用于ADC的载药需要兼具高细胞毒性和良好的稳定性,同时,具有强疏水性、可透膜的药物还可借助旁观者效应扩散至附近可能不表达靶抗原的肿瘤细胞,发挥杀伤作用。目前最常用的载药是微管蛋白抑制剂和可导致DNA损伤的化疗药物。如奥瑞他汀(应用最广泛的为MMAE和MMAF)、美登素(应用最广泛的为DM1和DM4)及艾日布林等可抑制微管的组装,引起细胞周期停滞,因此仅对增殖细胞起作
尽管理论上ADC能够靶向肿瘤细胞并减少对正常组织的损害,但仍然存在一定的药物毒性,包括血液学毒性、神经毒性、眼毒性和胃肠道毒性。荟萃分析显示,ADC的治疗相关不良事件(treatment-related adverse event, TRAE)总体发生率为91.2%,最常见的是淋巴细胞减少症、恶心、中性粒细胞减少症、视力模糊和周围神经病变等,大部分为低级别可控不良事件;严重不良事件主要为血液学毒性和神经毒性,最常见的包括中性粒细胞减少症、感觉迟钝、血小板减少症、发热性中性粒细胞减少症和淋巴细胞减少
ADC的主要药物毒性以脱靶、非肿瘤作用为主,与载药密切相关。临床数据表明,大多数ADC相关不良事件在发生谱、发生率和严重程度上与载药的不良事件相
另一部分药物毒性由靶抗原在正常组织中的表达引起,为靶向的非肿瘤作用,其不良反应特征与靶抗原的分布紧密关联。例如,德曲妥珠单抗(trastuzumab deruxtecan, T-DXd)可观察到特异性心脏毒性,这与曲妥珠单抗的分布特点有关;而同样以DXd为载药、靶向滋养层细胞表面抗原-2(trophoblast cell surface antigen 2, Trop2)的Dato-DXd则与其他Trop2靶向ADC相似,有较高的皮疹和口炎发病率,可能与皮肤和黏膜组织中Trop2高表达有
组织因子(tissue factor, TF)是一种重要的跨膜蛋白,可参与外源性凝血途径,对肿瘤的发展、转移和血管生成有重要作用。TF在94%~100%的宫颈癌组织中表达,其水平显著高于宫旁正常组
Tisotumab vedotin(TV)由抗TF单克隆抗体与微管蛋白抑制剂MMAE通过可裂解连接子连接而成。Ⅰ/Ⅱ期试验InnovaTV 201初步研究显示了TV在复发/转移性宫颈癌患者中的安全性与抗肿瘤活性,最常见的TRAE包括鼻出血、疲劳、恶心、结膜炎、脱发和食欲下
HER2是由ERBB2编码的受体酪氨酸激酶,属于表皮生长因子受体家族,在多种实体瘤中过表达。例如,子宫内膜癌组织标本中HER2阳性率为39.7%~44%,其中浆液性子宫内膜癌的HER2阳性率可达61
T-DXd由靶向HER2的曲妥珠单抗、肿瘤选择性的可裂解连接子和拓扑异构酶Ⅰ抑制剂组成,在宫颈癌、子宫内膜癌和卵巢癌的早期研究中均呈现出阳性结果。
针对HER2表达的局部进展期或转移患者的Ⅱ期研究DESTINY-PanTumor02将患者分为7个队列,分别纳入40例HER2阳性宫颈癌、子宫内膜癌和卵巢癌患者。研究结果显示,宫颈癌、子宫内膜癌和卵巢癌患者的ORR分别为50.0%、57.5%和45.0%,DOR分别为14.2个月、未达到和11.3个月,中位PFS分别为7.0个月、11.1个月和5.9个月,中位OS分别为13.6个月、26.0个月和13.2个
维迪西妥单抗是另一种靶向HER2的ADC,以MMAE为载药,最早应用于胃癌和尿路上皮癌。2023年一项研究显示,包含维迪西妥单抗的联合方案(联合放疗、PD-1/PD-L1抑制剂、GM-CSF和IL-2)在HER2阳性妇科肿瘤中ORR达66.7
叶酸是一种细胞生长、增殖过程中必需的物质,而叶酸受体-α(folate receptor α, FRα)在叶酸的细胞摄取过程中起着重要作用。研究发现,FRα在64%的子宫内膜癌和82%的卵巢癌中表
索米妥昔单抗(mirvetuximab soravtansine, MIRV)是全球首个靶向FRα的ADC,由抗FRα抗体、二硫化物连接子和抗微管蛋白DM4组成。MIRV在子宫内膜癌中目前仅有一项Ⅰ期临床研究数据,11例FRα阳性子宫内膜癌患者经过MIRV治疗后,有2例临床获
STRO-002是一种靶向FRα的新型ADC。STRO-002-GM 1研究中,STRO-002在复发/进展的子宫内膜样癌中DCR达到68.8
Trop2是一种肿瘤相关钙信号转导蛋白,62%~96.2%的子宫内膜癌中有Trop2表
钠依赖性磷酸盐转运蛋白2B(sodium-dependent phosphate transport protein 2B, NaPi2b)是一种在全身磷酸盐稳态中起关键作用的转运蛋白。免疫组化染色结果显示,高达93%的卵巢癌组织样本表达NaPi2b,而正常卵巢组织染色大多呈阴
LIFA是一种靶向NaPi2b的ADC,以MMAE为载药。Ⅰa期试验结果显示,30例铂耐药卵巢癌患者经LIFA单药治疗后,46%达到部分缓解(partial response, PR),中位DOR为342
研究显示,细胞表面糖蛋白间皮素(mesothelin)在71%的卵巢癌中表达,成为卵巢癌药物治疗的可能靶点之
随着ADC研发和应用的快速进展,其耐药性也成为需要关注的问题。耐药包括治疗失败及治疗有效性降低,可能在药物治疗后发生(继发性耐药),也可能在治疗开始时就存在(原发性耐药
针对当前存在的毒性和耐药问题,一个改良方向是研发双特异性ADC。双特异性ADC可分为两类:针对同一抗原不同表位的双表位ADC和针对不同抗原的双靶点ADC。双表位ADC多以HER2、间充质上皮转换因子(mesenchymal epithelial transition factor, MET)和FRα为靶点,而双靶点ADC主要结合表皮生长因子受体(epidermal growth factor receptor, EGFR)和其他靶点。双表位/靶点通过增加内吞和促进溶酶体运输产生协同作用,减少耐药可能,并增强药物对肿瘤细胞的选择性,降低其毒
目前,双特异性ADC均处于临床研究阶段,大部分研究对象为乳腺癌、胃癌和肺癌患者,但也有部分试验同时招募多种晚期实体瘤患者。这些临床试验未来公布的结果中,可能包含对妇科肿瘤领域双特异性ADC研究有价值的内容。IMGN-151是一种靶向FRα的双表位ADC,以美登素衍生物DM21为载药,在复发性子宫内膜癌和复发性高级别浆液性上皮性卵巢癌、原发性腹膜癌或输卵管癌患者中的首次人体研究(NCT05527184)正在进行中。
面对减少毒性和耐药的挑战,另一个探索方向是ADC与其他治疗联合应用,包括化疗、靶向治疗和免疫治疗。ADC与化疗药物联合可在肿瘤杀伤方面表现出协同活性;靶向药物可与ADC同时抑制多个信号通路或对一种信号通路进行双重阻断,从而以更小剂量达到有效杀伤肿瘤的目标;抗血管生成药物可促进肿瘤血管正常化,有助于提高ADC在肿瘤内的渗透性;而ADC与免疫治疗联合可以通过不同机制降低肿瘤的免疫耐受,促进免疫治疗对肿瘤的作
InnovaTV 205研究探索了TV联合卡铂或帕博利珠单抗治疗复发/转移性宫颈癌患者的疗效,结果显示,一线TV+卡铂组ORR为54.5%,中位PFS为6.9个月,中位OS未达到;一线TV+帕博利珠单抗组ORR为40.6%,中位PFS为5.3个月,中位OS未达到;二/三线TV+帕博利珠单抗组ORR为35.3%,中位PFS为5.6个月,中位OS为15.3个
FORWARD Ⅱ研究分别评估了MIRV联合贝伐珠单抗、联合卡铂和贝伐珠单抗,以及联合帕博利珠单抗在FRα阳性卵巢癌患者中的治疗效果。最终结果显示,MIRV联合贝伐珠单抗的ORR为47%,中位DOR为9.7个月,中位PFS为8.3个
ADC是一种新型抗肿瘤药物,因其独特的结构有弥补现有抗肿瘤治疗不足的潜力,在妇科肿瘤中也具有令人期待的应用前景,特别是对于治疗选择有限的复发/转移性患者。目前,TV治疗复发/转移性宫颈癌和MIRV治疗铂耐药复发性卵巢癌已获得FDA批准,并已成为NCCN宫颈癌指南推荐的二线及以上复发/转移性宫颈癌的首选药物之一,但尚未在国内上市。在国内获批后,将为复发/转移性妇科肿瘤患者提供更多有效的治疗选择。德曲妥珠单抗、维迪西妥单抗和戈沙妥珠单抗已在国内上市,但适应证尚不包含妇科肿瘤。当前的临床试验结果初步显示了这些药物在妇科肿瘤领域的应用潜能,但均以小样本量早期试验为主。期待未来开展更多这几种药物针对妇科肿瘤的临床研究,以获得更强的证据支持,进而使其获批用于妇科肿瘤患者。其他正在研发中的药物,包括DB-1303用于子宫内膜癌、STRO-002用于子宫内膜癌和卵巢癌、MORAb-202和R-DXd用于卵巢癌等,都处于更早的研究阶段,尽管获得了积极的结果,但在妇科肿瘤领域的作用仍待更多有效证据的确认。
虽然研究和应用已表明ADC具有独特的优势和令人鼓舞的疗效,但是其药物毒性与耐药性仍不可忽视。特别是部分ADC与细胞毒药物不同的特异性不良反应,如MIRV的眼毒性,需要在使用过程中重点关注。而不同ADC在妇科肿瘤中的耐药情况及机制尚不明确,需要更多样本和相关研究进行探索。
为了增加ADC的有效性,减少毒性和耐药,首先可以从其结构和作用机制入手进行优化。ADC作为一种靶向特异性抗原的药物,靶抗原的基因突变或蛋白表达对于其疗效至关重要。以靶向HER2的T-DXd为例,其在HER2激活突变或基因扩增的患者中均显示出良好的治疗效果,在HER2阳性妇科肿瘤患者中也有持久的临床效益,且在高表达人群中疗效更突出。因此,在复发/转移性妇科肿瘤患者中进行各靶点的检测,可能为对应ADC的应用提供针对性支持,为高表达患者带来较好的疗效。这也为妇科肿瘤ADC的进一步创新研发提供了一个重要方向,即寻找各类肿瘤患者中普遍具有基因突变或蛋白表达的靶抗原。以T-DXd为例,在子宫癌肉瘤中分别检测到5%~25%、15%~35%和20%~40%的免疫组织化学HER2 3+、2+和1+。基于此高阳性率,研究者设计了STATICE试验,并获得了T-DXd用于治疗子宫癌肉瘤患者的有利结果。沿着相似的路径,除上述提到的TF、HER2、FRα、Trop2、NaPi2b、间皮素、CDH6外,目前尚有多个潜在的优良靶点值得进一步研究并设计成为可能的ADC靶抗原,如子宫内膜癌中的CD116,卵巢癌中的MUC16、PTK7、CD116、AXL、EFNA-4、DPEP3等。
ADC的下一步更新迭代还依赖于抗体、连接子和载药的进一步创新发展。抗体的亲和力对ADC的靶向性调节至关重要,过低的亲和力使其不足以有效结合至靶抗原并被内吞发挥抗肿瘤作用,而过高的亲和力则可能使其过度结合于表达靶抗原的正常细胞,造成严重的毒性。一种研究方向是开发可变抗原亲和力的工程化抗体,如使用对肿瘤过表达蛋白酶敏感的肽来掩蔽抗体的Fab结构域,增强其肿瘤特异性。连接子的特性也是ADC有效性和特异性的关键。目前临床获批使用的ADC中,超过80%采用了可裂解连接子,通过在肿瘤细胞环境中裂解增强了特异性,但仍存在因提前释放产生毒性的情况。因此,重要的更新方向是设计裂解条件更具有选择性的可裂解连接子,如受肿瘤细胞中过表达的水解酶硫酸酯酶、β-半乳糖苷酶等切割的连接子。载药方面,目前以微管蛋白抑制剂和可导致DNA损伤的化疗药物为主,下一代载药的拓展方向包括毒性更强的小分子降解物、可激活免疫的药物及多药负载等。
除ADC的设计更新外,增加特异性和有效性的其他研究方向主要包括研发双特异性ADC和将ADC与其他治疗联合。前者仍处于起步阶段,可开发的方向包括针对同一抗原不同表位的双表位ADC和针对不同抗原的双靶点ADC。然而,其在妇科肿瘤领域的临床数据仍接近空白,需要更多研究探索双特异性ADC对妇科肿瘤患者的疗效。ADC联合策略已经在妇科肿瘤中取得一些有效成果。MIRV与贝伐珠单抗联合治疗铂耐药复发性卵巢癌已获得NCCN指南推荐,ADC与免疫治疗联合的研究也正在如火如荼地开展,可能是未来的突破口之一。
总的来说,ADC在国内尤其在妇科肿瘤领域应用时间尚短,因此需要格外谨慎地对其适应证和TRAE进行评估和处理,也亟待开展更多临床试验探索其适宜的应用场景和下一步改良策略。随着对ADC的不断研究和改进,未来有望进一步改善妇科肿瘤患者的结局。
参考文献
HAN B, ZHENG R, ZENG H, et al. Cancer incidence and mortality in China, 2022 [J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006. [百度学术]
ERICKSON B K, ZEYBEK B, SANTIN A D, et al. Targeting human epidermal growth factor receptor 2 (HER2) in gynecologic malignancies [J]. Curr Opin Obstet Gynecol, 2020, 32(1): 57-64. DOI: 10.1097/GCO.0000000000000599. [百度学术]
FU Z W, LI S J, HAN S F, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy [J]. Signal Transduct Target Ther, 2022, 7(1): 93. DOI: 10.1038/s41392-022-00947-7. [百度学术]
DE CECCO M, GALBRAITH D N, MCDERMOTT L L. What makes a good antibody-drug conjugate? [J]. Expert Opin Biol Ther, 2021, 21(7): 841-847. DOI: 10.1080/14712598.2021.1880562. [百度学术]
BARGH J D, ISIDRO-LLOBET A, PARKER J S, et al. Cleavable linkers in antibody-drug conjugates [J]. Chem Soc Rev, 2019, 48(16): 4361-4374. DOI: 10.1039/c8cs00676h. [百度学术]
CHEN H, LIN Z T, ARNST K E, et al. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy [J]. Molecules, 2017, 22(8): 1281. DOI: 10.3390/molecules22081281. [百度学术]
OGITANI Y, AIDA T, HAGIHARA K, et al. DS-8201a, A novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1 [J]. Clin Cancer Res, 2016, 22(20): 5097-5108. DOI: 10.1158/1078-0432.CCR-15-2822. [百度学术]
ZHU Y W, LIU K, WANG K L, et al. Treatment-related adverse events of antibody-drug conjugates in clinical trials: a systematic review and meta-analysis [J]. Cancer, 2023, 129(2): 283-295. DOI: 10.1002/cncr.34507. [百度学术]
COLOMBO R, RICH J R. The therapeutic window of antibody drug conjugates: a dogma in need of revision [J]. Cancer Cell, 2022, 40(11): 1255-1263. DOI: 10.1016/j.ccell.2022.09.016. [百度学术]
SABER H, LEIGHTON J K. An FDA oncology analysis of antibody-drug conjugates [J]. Regul Toxicol Pharmacol, 2015, 71(3): 444-452. DOI: 10.1016/j.yrtph.2015.01.014. [百度学术]
ZHAO H, ATKINSON J, GULESSERIAN S, et al. Modulation of macropinocytosis-mediated internalization decreases ocular toxicity of antibody-drug conjugates [J]. Cancer Res, 2018, 78(8): 2115-2126. DOI: 10.1158/0008-5472.CAN-17-3202. [百度学术]
NGUYEN T D, BORDEAU B M, BALTHASAR J P. Mechanisms of ADC toxicity and strategies to increase ADC tolerability [J]. Cancers (Basel), 2023, 15(3): 713. DOI: 10.3390/cancers15030713. [百度学术]
TARANTINO P, RICCIUTI B, PRADHAN S M, et al. Optimizing the safety of antibody-drug conjugates for patients with solid tumours [J]. Nat Rev Clin Oncol, 2023, 20(8): 558-576. DOI: 10.1038/s41571-023-00783-w. [百度学术]
COCCO E, VARUGHESE J, BUZA N, et al. Expression of tissue factor in adenocarcinoma and squamous cell carcinoma of the uterine cervix: implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor [J]. BMC Cancer, 2011, 11: 263. DOI: 10.1186/1471-2407-11-263. [百度学术]
ZHAO X T, CHENG C, GOU J H, et al. Expression of tissue factor in human cervical carcinoma tissue [J]. Exp Ther Med, 2018, 16(5): 4075-4081. DOI: 10.3892/etm.2018.6723. [百度学术]
HONG D S, CONCIN N, VERGOTE I, et al. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer [J]. Clin Cancer Res, 2020, 26(6): 1220-1228. DOI: 10.1158/1078-0432.CCR-19-2962. [百度学术]
COLEMAN R L, LORUSSO D, GENNIGENS C, et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study [J]. Lancet Oncol, 2021, 22(5): 609-619. DOI: 10.1016/S1470-2045(21)00056-5. [百度学术]
YONEMORI K, KUBOKI Y, HASEGAWA K, et al. Tisotumab vedotin in Japanese patients with recurrent/metastatic cervical cancer: results from the innovaTV 206 study [J]. Cancer Sci, 2022, 113(8): 2788-2797. DOI: 10.1111/cas.15443. [百度学术]
VERGOTE I B, GONZALEZ MARTIN A, FUJIWARA K, et al. LBA9 innovaTV 301/ENGOT-cx12/GOG-3057: a global, randomized, open-label, phase III study of tisotumab vedotin vs investigator’s choice of chemotherapy in 2L or 3L recurrent or metastatic cervical cancer [J]. Ann Oncol, 2023, 34: S1276-S1277. DOI: 10.1016/j.annonc.2023.10.029. [百度学术]
CIANCIULLI A M, GUADAGNI F, MARZANO R, et al. HER-2/neu oncogene amplification and chromosome 17 aneusomy in endometrial carcinoma: correlation with oncoprotein expression and conventional pathological parameters [J]. J Exp Clin Cancer Res, 2003, 22(2): 265-271. [百度学术]
GRUSHKO T A, FILIACI V L, MUNDT A J, et al. An exploratory analysis of HER-2 amplification and overexpression in advanced endometrial carcinoma: a gynecologic oncology group study [J]. Gynecol Oncol, 2008, 108(1): 3-9. DOI: 10.1016/j.ygyno.2007.09.007. [百度学术]
MERIC-BERNSTAM F, MAKKER V, OAKNIN A, et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial [J]. J Clin Oncol, 2024, 42(1): 47-58. DOI: 10.1200/JCO.23.02005. [百度学术]
LI B T, MERIC-BERNSTAM F, BARDIA A, et al. 654O efficacy and safety of trastuzumab deruxtecan (T-DXd) in patients (pts) with solid tumors harboring specific HER2-activating mutations (HER2m): primary results from the international phase II DESTINY-PanTumor01 (DPT-01) study [J]. Ann Oncol, 2023, 34: S459-S460. DOI: 10.1016/j.annonc.2023.09.1840. [百度学术]
TANIGUCHI H, YAGISAWA M, SATOH T, et al. Tissue-agnostic efficacy of trastuzumab deruxtecan (T-DXd) in advanced solid tumors with HER2 amplification identified by plasma cell-free DNA (cfDNA) testing: results from a phase 2 basket trial (HERALD/EPOC1806) [J]. J Clin Oncol, 2023, 41(16_suppl): 3014. DOI: 10.1200/jco.2023.41.16_suppl.3014. [百度学术]
NISHIKAWA T, HASEGAWA K, MATSUMOTO K, et al. Trastuzumab deruxtecan for human epidermal growth factor receptor 2-expressing advanced or recurrent uterine carcinosarcoma (NCCH1615): the STATICE trial [J]. J Clin Oncol, 2023, 41(15): 2789-2799. DOI: 10.1200/JCO.22.02558. [百度学术]
XU M L, CHEN R Z, XING P F, et al. A multicenter, phase II trial of RC48-ADC combined with radiotherapy, PD-1/PD-L1 inhibitor, GM-CSF, and sequential IL-2 (PRaG3.0 regimen) for salvage therapy in patients with HER2-expressing advanced solid tumors [J]. J Clin Oncol, 2023, 41(16_suppl): e14614. DOI: 10.1200/jco.2023.41.16_suppl.e14614. [百度学术]
YUAN G W, LI G L, LI Q S, et al. Evaluation of the effectiveness and safety of disitamab vedotin in HER2-expressing 2L recurrent or metastatic cervical cancer (r/mCC): interim results of RC48-C018 [J]. J Clin Oncol, 2024, 42(16_suppl): 5528. DOI: 10.1200/jco.2024.42.16_suppl.5528. [百度学术]
MOORE K N, SABANATHAN D, DU Y Q, et al. Safety and efficacy of DB-1303 in patients with advanced/metastatic solid tumors: a multicenter, open-label, first-in-human, phase 1/2a study [J]. J Clin Oncol, 2023, 41(16_suppl): 3023. DOI: 10.1200/jco.2023.41.16_suppl.3023. [百度学术]
ASSARAF Y G, LEAMON C P, REDDY J A. The folate receptor as a rational therapeutic target for personalized cancer treatment [J]. Drug Resist Updat, 2014, 17(4/5/6): 89-95. DOI: 10.1016/j.drup.2014.10.002. [百度学术]
MOORE K N, BORGHAEI H, O’MALLEY D M, et al. Phase 1 dose-escalation study of mirvetuximab soravtansine (IMGN853), a folate receptor α-targeting antibody-drug conjugate, in patients with solid tumors [J]. Cancer, 2017, 123(16): 3080-3087. DOI: 10.1002/cncr.30736. [百度学术]
MATULONIS U A, LORUSSO D, OAKNIN A, et al. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study [J]. J Clin Oncol, 2023, 41(13): 2436-2445. DOI: 10.1200/JCO.22.01900. [百度学术]
MOORE K N, ANGELERGUES A, KONECNY G E, et al. Phase III MIRASOL (GOG 3045/ENGOT-ov55) study: initial report of mirvetuximab soravtansine vs. investigator’s choice of chemotherapy in platinum-resistant, advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor-alpha expression [J]. J Clin Oncol, 2023, 41(17_suppl): LBA5507. DOI: 10.1200/jco.2023.41.17_suppl.lba5507. [百度学术]
MOORE K N, OZA A M, COLOMBO N, et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I [J]. Ann Oncol, 2021, 32(6): 757-765. DOI: 10.1016/j.annonc.2021.02.017. [百度学术]
POTHURI B, NAUMANN R W, MARTIN L P, et al. 741MO luveltamab tazevibulin (STRO-002), an anti-folate receptor alpha (FolRα) antibody drug conjugate (ADC), demonstrates clinical activity in recurrent/progressive epithelial endometrial cancer (EEC): STRO-002-GM1 phase I dose expansion [J]. Ann Oncol, 2023, 34: S508. DOI: 10.1016/j.annonc.2023.09.1920. [百度学术]
NAUMANN R W, BRAITEH F S, MARTIN L P, et al. Phase 1 dose-escalation study of STRO-002, an antifolate receptor alpha (FRα) antibody drug conjugate (ADC), in patients with advanced, progressive platinum-resistant/refractory epithelial ovarian cancer (EOC) [J]. J Clin Oncol, 2021, 39(15_suppl): 5550. DOI: 10.1200/jco.2021.39.15_suppl.5550. [百度学术]
SHIMIZU T, FUJIWARA Y, YONEMORI K, et al. First-in-human phase 1 study of MORAb-202, an antibody-drug conjugate comprising farletuzumab linked to eribulin mesylate, in patients with folate receptor-α-positive advanced solid tumors [J]. Clin Cancer Res, 2021, 27(14): 3905-3915. DOI: 10.1158/1078-0432.CCR-20-4740. [百度学术]
NISHIO S, YUNOKAWA M, MATSUMOTO K, et al. Safety and efficacy of MORAb-202 in patients (pts) with platinum-resistant ovarian cancer (PROC): results from the expansion part of a phase 1 trial [J]. J Clin Oncol, 2022, 40(16_suppl): 5513. DOI: 10.1200/jco.2022.40.16_suppl.5513. [百度学术]
BIGNOTTI E, RAVAGGI A, ROMANI C, et al. Trop-2 overexpression in poorly differentiated endometrial endometrioid carcinoma: implications for immunotherapy with hRS7, a humanized anti-trop-2 monoclonal antibody [J]. Int J Gynecol Cancer, 2011, 21(9): 1613-1621. DOI: 10.1097/IGC.0b013e318228f6da. [百度学术]
VARUGHESE J, COCCO E, BELLONE S, et al. Uterine serous papillary carcinomas overexpress human trophoblast-cell-surface marker (Trop-2) and are highly sensitive to immunotherapy with hRS7, a humanized anti-Trop-2 monoclonal antibody [J]. Cancer, 2011, 117(14): 3163-3172. DOI: 10.1002/cncr.25891. [百度学术]
BARDIA A, MESSERSMITH W A, KIO E A, et al. Sacituzumab govitecan, a trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial [J]. Ann Oncol, 2021, 32(6): 746-756. DOI: 10.1016/j.annonc.2021.03.005. [百度学术]
SANTIN A, CORR B, SPIRA A I, et al. TROPiCS-03: a phase 2 basket study of sacituzumab govitecan (SG) in patients (pts) with metastatic solid tumors—early analysis in pts with advanced/metastatic endometrial cancer (EC) [J]. J Clin Oncol, 2023, 41(16_suppl): 5610. DOI: 10.1200/jco.2023.41.16_suppl.5610. [百度学术]
SANTIN A, MCNAMARA B, SIEGEL E R, et al. Preliminary results of a phase II trial with sacituzumab govitecan-hziy in patients with recurrent endometrial carcinoma overexpressing Trop-2 [J]. J Clin Oncol, 2023, 41(16_suppl): 5599. DOI: 10.1200/jco.2023.41.16_suppl.5599. [百度学术]
LEVAN K, MEHRYAR M, MATEOIU C, et al. Immunohistochemical evaluation of epithelial ovarian carcinomas identifies three different expression patterns of the MX35 antigen, NaPi2b [J]. BMC Cancer, 2017, 17(1): 303. DOI: 10.1186/s12885-017-3289-2. [百度学术]
GERBER D E, INFANTE J R, GORDON M S, et al. Phase ia study of anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin DNIB0600A in patients with non-small cell lung cancer and platinum-resistant ovarian cancer [J]. Clin Cancer Res, 2020, 26(2): 364-372. DOI: 10.1158/1078-0432.CCR-18-3965. [百度学术]
BANERJEE S, OZA A M, BIRRER M J, et al. Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study [J]. Ann Oncol, 2018, 29(4): 917-923. DOI: 10.1093/annonc/mdy023. [百度学术]
TOLCHER A W, ULAHANNAN S V, PAPADOPOULOS K P, et al. Phase 1 dose escalation study of XMT-1536, a novel NaPi2b-targeting antibody-drug conjugate (ADC), in patients (pts) with solid tumors likely to express NaPi2b [J]. J Clin Oncol, 2019, 37(15_suppl): 3010. DOI: 10.1200/jco.2019.37.15_suppl.3010. [百度学术]
HAMILTON E P, BARVE M A, TOLCHER A W, et al. 836P safety and efficacy of XMT-1536 in ovarian cancer: a subgroup analysis from the phase I expansion study of XMT-1536, a NaPi2b antibody-drug conjugate [J]. Ann Oncol, 2020, 31: S627-S628. DOI: 10.1016/j.annonc.2020.08.975. [百度学术]
FREDETTE J. Mersana therapeutics announces topline data from UPLIFT clinical trial in patients with platinum-resistant ovarian cancer and strategic reprioritization [EB/OL]. (2023-07-23) [2024-06-20]. https://ir.mersana.com/news-releases/news-release-details/mersana-therapeutics-announces-topline-data-uplift-clinical. [百度学术]
HASSAN R, KREITMAN R J, PASTAN I, et al. Localization of mesothelin in epithelial ovarian cancer [J]. Appl Immunohistochem Mol Morphol, 2005, 13(3): 243-247. DOI: 10.1097/01.pai.00000141545.36485.d6. [百度学术]
HASSAN R, JrBLUMENSCHEIN G R, MOORE K N, et al. First-in-human, multicenter, phase I dose-escalation and expansion study of anti-mesothelin antibody-drug conjugate anetumab ravtansine in advanced or metastatic solid tumors [J]. J Clin Oncol, 2020, 38(16): 1824-1835. DOI: 10.1200/JCO.19.02085. [百度学术]
LHEUREUX S, ALQAISI H, COHN D E, et al. A randomized phase II study of bevacizumab and weekly anetumab ravtansine or weekly paclitaxel in platinum-resistant or refractory ovarian cancer NCI trial#10150 [J]. J Clin Oncol, 2022, 40(16_suppl): 5514. DOI: 10.1200/jco.2022.40.16_suppl.5514. [百度学术]
SUZUKI H, NAGASE S, SAITO C, et al. Raludotatug deruxtecan, a CDH6-targeting antibody-drug conjugate with a DNA topoisomerase I inhibitor DXd, is efficacious in human ovarian and kidney cancer models [J]. Mol Cancer Ther, 2024, 23(3): 257-271. DOI: 10.1158/1535-7163.MCT-23-0287. [百度学术]
MOORE K N, PHILIPOVSKIY A, HARANO K, et al. 745MO raludotatug deruxtecan (R-DXd; DS-6000) monotherapy in patients with previously treated ovarian cancer (OVC): subgroup analysis of a first-in-human phase I study [J]. Ann Oncol, 2023, 34: S510. DOI: 10.1016/j.annonc.2023.09.1924. [百度学术]
GARCÍA-ALONSO S, OCAÑA A, PANDIELLA A. Resistance to antibody-drug conjugates [J]. Cancer Res, 2018, 78(9): 2159-2165. DOI: 10.1158/0008-5472.CAN-17-3671. [百度学术]
KHOURY R, SALEH K, KHALIFE N, et al. Mechanisms of resistance to antibody-drug conjugates [J]. Int J Mol Sci, 2023, 24(11): 9674. DOI: 10.3390/ijms24119674. [百度学术]
BEISHENALIEV A, LOKE Y L, GOH S J, et al. Bispecific antibodies for targeted delivery of anti-cancer therapeutic agents: a review [J]. J Control Release, 2023, 359: 268-286. DOI: 10.1016/j.jconrel.2023.05.032. [百度学术]
HONG Y J, NAM S M, MOON A. Antibody-drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry [J]. Arch Pharm Res, 2023, 46(3): 131-148. DOI: 10.1007/s12272-023-01433-6. [百度学术]
FUENTES-ANTRÁS J, GENTA S, VIJENTHIRA A, et al. Antibody-drug conjugates: in search of partners of choice [J]. Trends Cancer, 2023, 9(4): 339-354. DOI: 10.1016/j.trecan.2023.01.003. [百度学术]
VERGOTE I, VAN NIEUWENHUYSEN E, O’CEARBHAILL R E, et al. Tisotumab vedotin in combination with carboplatin, pembrolizumab, or bevacizumab in recurrent or metastatic cervical cancer: results from the innovaTV 205/GOG-3024/ENGOT-cx8 study [J]. J Clin Oncol, 2023, 41(36): 5536-5549. DOI: 10.1200/JCO.23.00720. [百度学术]
O’MALLEY D M, OAKNIN A, MATULONIS U A, et al. Mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients (pts) with platinum-agnostic ovarian cancer: final analysis [J]. J Clin Oncol, 2021, 39(15_suppl): 5504. DOI: 10.1200/jco.2021.39.15_suppl.5504. [百度学术]
O’MALLEY D M, RICHARDSON D L, VERGOTE I B, et al. 833P mirvetuximab soravtansine (MIRV), a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with carboplatin (CARBO) and bevacizumab (BEV): final results from a study in patients (pts) with recurrent platinum sensitive ovarian cancer [J]. Ann Oncol, 2020, 31: S626-S627. DOI: 10.1016/j.annonc.2020.08.972. [百度学术]