摘要
探讨滋养层细胞表面抗原2(Trop2)的嵌合抗原受体T细胞疗法(CAR-T)在肺腺癌(LUAD)治疗中的研究进展。Trop2是一种在多种肿瘤中过表达的蛋白,尤其是在LUAD中,与疾病恶化和高复发率相关。针对靶向Trop2的CAR-T是通过基因工程改造T细胞,在LUAD治疗中展现出显著的治疗潜力。本文主要讨论如何提高靶向Trop2 CAR-T疗法的特异性和安全性,以及与其他药物如抗体药物偶联物(ADC)的联合应用,使其能够应用于更多肿瘤的治疗。
肺腺癌(lung adenocarcinoma, LUAD)是肺癌中最常见的亚型。2020年全球癌症统计数据显示,LUAD在肺癌中的比例逐年上升,成为主要的公共健康挑战之
研究发现,Trop2在多种肿瘤中(包括LUAD)过表
Trop2位于人类第1号染色体上,长度约30 kb,含有9个外显子。其编码的Trop2蛋白是一种细胞表面糖蛋白,也是细胞内钙信号跨膜转导蛋
LUAD是非小细胞肺癌(non-small cell lung cancer, NSCLC)的主要亚型,发病率逐年上升。研究发现,Trop2在多数LUAD患者肿瘤组织中显著过表
LUAD的临床特征与预后受多种因素影响。研究表明,Trop2表达水平与LUAD的临床特征及预后关系密
CAR-T是一种创新的癌症治疗手段。该方法首先从患者体内提取T细胞,对其进行基因工程改造后,再回输至患者体

图1 CAR-T疗法治疗LUAD的机制
Fig. 1 Mechanism diagram of CAR-T therapy for LUAD
CAR-T疗法结合了免疫学和基因工程技术,是前沿的癌症治疗手
CAR-T疗法在多种肿瘤中展现出显著疗
在正常生理状态下,Trop2主要在上皮细胞中表达,并在胚胎发育中发挥关键作用。在皮肤、角膜、唾液腺、呼吸道、肺等正常组织中,均可检测到Trop2的表达,但其表达水平相对较

图2 CAR-T疗法通过靶向Trop2治疗LUAD的机制
Fig. 2 Mechanism diagram of Trop2-targeted CAR-T therapy for LUAD
CAR-T疗法的成功很大程度上取决于其对肿瘤细胞的特异性。制备Trop2靶向的CAR-T细胞需要遵循一系列关键步骤,以确保细胞的特异性和活性。首先,选择一个能特异性结合Trop2的抗体片段,如单链变量片
Trop2靶向CAR-T细胞设计用于特异性攻击表达Trop2的肿瘤细胞,LUAD细胞是主要目
抗体药物偶联物(antibody-drug conjugate, ADC)是一类生物制剂,由有生物活性的细胞毒药物与连接的抗体组成,通过与特定的细胞表面抗原结合,将细胞毒药物特异性地递送至肿瘤细胞,从而减少脱靶毒
在LUAD的治疗中,靶向治疗和细胞免疫治疗已成为有效的治疗手段。ADC和CAR-T分别代表这两个领域的前沿技术。ADC结合抗体与细胞毒药物,能够选择性地将药物递送至肿瘤细胞,减少对正常组织的损
Trop2靶向CAR-T疗法作为新兴的治疗手段,引起了科研人员和临床医生的关
近年来,Trop2和CAR-T疗法在肿瘤治疗中的应用逐渐增多,技术创新与研发方向备受重
肿瘤类型 | 研究阶段 | 研究结果 |
---|---|---|
晚期TNBC | ASCENT Ⅲ期二线及以上 | 显著改善PFS及OS,获批晚期TNBC适应证 |
ASCENT-03 Ⅲ期一线 | 进行中 | |
Saci-IO Ⅱ期戈沙妥珠单抗+帕博利珠单抗一线 | 进行中 | |
ASCENT-04 Ⅲ期戈沙妥珠单抗+帕博利珠单抗一线 | 进行中 | |
NCT04039230Ⅰ/Ⅱ期戈沙妥珠单抗+Talazoparib | 进行中 | |
Morpheus-panBC Ⅰ/Ⅱ期多种组合 | 进行中 | |
NCT05347134 Ⅲ期 | 进行中 | |
TROPION-Breast01 Ⅲ期一线 | 进行中 | |
BEGONIA Ⅰb/Ⅱ期Dato-DXd+度伐利尤单抗一线 | 显示初步疗效 | |
TNBC | TROPION-Lung Breat02 | 进行中 |
早期乳腺癌 | ASCENT-05/OptimlCE-RD(AFT-65)Ⅲ期戈沙妥珠单抗+帕博利珠单抗辅助治疗TNBC | 进行中 |
SASCIA Ⅲ期HER2-早期乳腺癌辅助治疗 | 进行中 | |
NeoSTAR Ⅱ期TNBC新辅助治疗 | 进行中 | |
TROPION-Breast03 Ⅲ期早期TNBC辅助治疗 | 进行中 | |
晚期HR+/HER2-乳腺癌 | TROPION-Breast01 Ⅲ期二线及以上 | 进行中 |
TROPiCS-02 Ⅲ期二线以上 | 显著改善PFS及OS,获批HR+/HER2-乳腺癌适应证 | |
HR+/HER2低表达或阴性乳腺癌二线等 | TROPION-Lung Breat01 | 进行中 |
尿路上皮癌 | TROPHY-U-01Ⅱ期 | 队列1初步结果公布,获FDA加速批准 |
TROPiCS-04 Ⅲ期 | 进行中 | |
去势抵抗性前列腺癌 | NCT03725761 Ⅱ期 | 进行中 |
子宫内膜癌 | NCT04251416 Ⅱ期 | 进行中 |
胶质瘤 | NCT04559230 Ⅱ期 | 进行中 |
晚期NSCLC | TROPION-Lung01 Ⅲ期二线及以上 | 改善PFS,OS进行中 |
TROPION-Lung07 Ⅲ期一线Dato-DXd+帕博利珠单抗 | 进行中 | |
TROPION-Lung08 Ⅲ期一线Dato-DXd+帕博利珠单抗+铂类 | 进行中 | |
TROPION-Lung04 Ⅰb期Dato-DXd+度伐利尤单抗±卡铂一线或以上 | 显示出初步疗效及可耐受安全性 | |
TROPION-Lung05 Ⅱ期 | 进行中 | |
TROPION-Lung02 | 进行中 | |
EVOKE-03 Ⅲ期一线 | 进行中 | |
EVOKE-02 Ⅱ期一线 | 进行中,多队列显示初步疗效 | |
EVOKE-01 Ⅲ期二线 | 进行中 | |
多瘤种 | TROPION-PanTumor01 Ⅰ/Ⅱ期 | TNBC及HR+/HER2-乳腺癌队列显示初步疗效 |
TROPION-PanTumor02 Ⅰ/Ⅱ期 | 进行中 | |
IMMU-132-01 Ⅰ/Ⅱ期 | 多队列显示出疗效 | |
实体瘤 | NCT04892342 Ⅱ期 | 进行中 |
NCT05174637 Ⅰ期 | 进行中 | |
NCT04601285 Ⅰ期 | 终止 |
药物 | 瘤种 | 研究阶段 | 研究结果 |
---|---|---|---|
利妥昔单抗+奥妥珠单抗 | 大B细胞淋巴瘤 | ZULA-14试验(NCTO4002401) | 完全缓解率65%,总响应率88% |
BNT211-01 trial | 实体瘤 | NCT04503278研究 | 客观反应率33%,疾病控制率67% |
Anakinra | CRS和ICANS | 2期试验NCT04148430 | ICANS发生率显著降低,疾病反应率提高 |
Lenzilumab | CRS和ICANS | 1/2期试验NCT04314843 | 减轻CRS和ICANS |
Itacitinib | 前淋巴瘤 | NCT05757219 | 进行中 |
CD19/20 CAR-T细胞输注 | R/R B-NHL | Ⅰ/Ⅱ期研究 | 进行中 |
伊基奥仑赛注射液 | 多发性骨髓瘤 | 2023年6月获批 | CR 74.3% |
纳基奥仑赛注射液 | 急性B细胞白血病 | 2023年11月获批 | CR 66.7% |
泽沃基奥仑赛注射液 | 多发性骨髓瘤 | 2024年3月获批 | CR 78.6% |
GCC19CART | 转移性结直肠癌 | Ⅰ期 | 低剂量ORR 15.4%,中剂量ORR 50% |
IL-12 | 卵巢癌 | NCT02498912、NCT06343376 | 增强CAR-T细胞活性 |
IL-18 | 血液恶性肿瘤 | NCT04684563 | 研究中 |
VCN-01 | 胰腺癌、卵巢癌 | NCT05057715 | 研究中 |
Lenalidomide | 多发性骨髓瘤 | NCT0NCT037402566045806 | 研究中 |
CAdVEC | HER2+实体瘤 | 研究中 |
注: ICANS表示免疫效应细胞相关神经毒性综合征;R/R B-NHL表示复发/难治性B细胞性非霍奇金淋巴瘤。
Note: ICANS means immune effector cell-associated neurotoxicity syndrome; R/R B-NHL means recurrent/refractory B cell non-Hodgkin lymphoma.
Trop2靶向CAR-T疗法在LUAD中的成功应用为其在其他肿瘤类型中的应用奠定了基
参考文献
CHEN J B, YANG H C, TEO A S M, et al. Genomic landscape of lung adenocarcinoma in East Asians [J]. Nat Genet, 2020, 52(2): 177-186. DOI: 10.1038/s41588-019-0569-6. [百度学术]
NELSON B E, MERIC-BERNSTAM F. Leveraging TROP2 antibody-drug conjugates in solid tumors [J]. Annu Rev Med, 2024, 75: 31-48. DOI: 10.1146/annurev-med-071322-065903. [百度学术]
SCAFOGLIO C R, VILLEGAS B, ABDELHADY G, et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma [J]. Sci Transl Med, 2018, 10(467): eaat5933. DOI: 10.1126/scitranslmed.aat5933. [百度学术]
KOBAYASHI H, MINAMI Y, ANAMI Y, et al. Expression of the GA733 gene family and its relationship to prognosis in pulmonary adenocarcinoma [J]. Virchows Arch, 2010, 457(1): 69-76. DOI: 10.1007/s00428-010-0930-8. [百度学术]
LI Z H, JIANG X S, ZHANG W. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells [J]. Biochem Biophys Res Commun, 2016, 470(1): 197-204. DOI: 10.1016/j.bbrc.2016.01.032. [百度学术]
PAK M G, SHIN D H, LEE C H, et al. Significance of EpCAM and TROP2 expression in non-small cell lung cancer [J]. World J Surg Oncol, 2012, 10: 53. DOI: 10.1186/1477-7819-10-53. [百度学术]
MOHAMED F E Z A, ABDELAZIZ A O, KASEM A H, et al. Thyroid hormone receptor α1 acts as a new squamous cell lung cancer diagnostic marker and poor prognosis predictor [J]. Sci Rep, 2021, 11(1): 7944. DOI: 10.1038/s41598-021-86754-6. [百度学术]
QIN Z Q, ZHANG H, YAN P Y, et al. Aumolertinib in NSCLC with leptomeningeal involvement, harbouring concurrent EGFR exon 19 deletion and TP53 comutation: a case report [J]. J Thorac Dis, 2023, 15(7): 4016-4026. DOI: 10.21037/jtd-23-841. [百度学术]
GOLDSTEIN A S, LAWSON D A, CHENG D H, et al. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics [J]. Proc Natl Acad Sci U S A, 2008, 105(52): 20882-20887. DOI: 10.1073/pnas.0811411106. [百度学术]
SHIMADA A, KANO J, ISHIYAMA T, et al. Establishment of an immortalized cell line from a precancerous lesion of lung adenocarcinoma, and genes highly expressed in the early stages of lung adenocarcinoma development [J]. Cancer Sci, 2005, 96(10): 668-675. DOI: 10.1111/j.1349-7006.2005.00100.x. [百度学术]
JU X M, JIAO X M, ERTEL A, et al. V-src oncogene induces Trop2 proteolytic activation via cyclin D1 [J]. Cancer Res, 2016, 76(22): 6723-6734. DOI: 10.1158/0008-5472.CAN-15-3327. [百度学术]
ZHANG H, PAN Y Z, CHEUNG M, et al. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway [J]. Cell Death Dis, 2019, 10(3): 230. DOI: 10.1038/s41419-019-1320-z. [百度学术]
LI Q, RAN P Z, ZHANG X Y, et al. Downregulation of N-acetylglucosaminyltransferase GCNT3 by miR-302b-3p decreases non-small cell lung cancer (NSCLC) cell proliferation, migration and invasion [J]. Cell Physiol Biochem, 2018, 50(3): 987-1004. DOI: 10.1159/000494482. [百度学术]
YUE S J, ZHANG P X, ZHU Y, et al. A ferulic acid derivative FXS-3 inhibits proliferation and metastasis of human lung cancer A549 cells via positive JNK signaling pathway and negative ERK/p38, AKT/mTOR and MEK/ERK signaling pathways [J]. Molecules, 2019, 24(11): 2165. DOI: 10.3390/molecules 24112165. [百度学术]
ZHOU F Z, NIE L, FENG D L, et al. Retracted]MicroRNA-379 acts as a tumor suppressor in non-small cell lung cancer by targeting the IGF-1R-mediated AKT and ERK pathways [J]. Oncol Rep, 2022, 48(1): 128. DOI: 10.3892/or.2022.8339. [百度学术]
YU S, TANG L X, ZHANG Q Q, et al. A cuproptosis-related lncRNA signature for predicting prognosis and immunotherapy response of lung adenocarcinoma [J]. Hereditas, 2023, 160(1): 31. DOI: 10.1186/s41065-023-00293-w. [百度学术]
HE M, HAN Y, CAI C J, et al. CLEC10A is a prognostic biomarker and correlated with clinical pathologic features and immune infiltrates in lung adenocarcinoma [J]. J Cell Mol Med, 2021, 25(7): 3391-3399. DOI: 10.1111/jcmm.16416. [百度学术]
SONG P, LI W B, GUO L, et al. Identification and validation of a novel signature based on NK cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma by integrated analysis of single-cell and bulk RNA-sequencing [J]. Front Immunol, 2022, 13: 850745. DOI: 10.3389/fimmu.2022.850745. [百度学术]
ZHANG X M, ZHANG H, LAN H X, et al. CAR-T cell therapy in multiple myeloma: current limitations and potential strategies [J]. Front Immunol, 2023, 14: 1101495. DOI: 10.3389/fimmu.2023.1101495. [百度学术]
GONG Y, KLEIN WOLTERINK R G J, WANG J X, et al. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy [J]. J Hematol Oncol, 2021, 14(1): 73. DOI: 10.1186/s13045-021-01083-5. [百度学术]
MOHANTY R, CHOWDHURY C R, AREGA S, et al. CAR T cell therapy: a new era for cancer treatment (Review) [J]. Oncol Rep, 2019, 42(6): 2183-2195. DOI: 10.3892/or.2019.7335. [百度学术]
SRIVASTAVA S, RIDDELL S R. Chimeric antigen receptor T cell therapy: challenges to bench-to-bedside efficacy [J]. J Immunol, 2018, 200(2): 459-468. DOI: 10.4049/jimmunol. 1701155. [百度学术]
LU Y J, CHU H Y, WHEELER L W, et al. Preclinical evaluation of bispecific adaptor molecule controlled folate receptor CAR-T cell therapy with special focus on pediatric malignancies [J]. Front Oncol, 2019, 9: 151. DOI: 10.3389/fonc.2019.00151. [百度学术]
PENACK O, KOENECKE C. Complications after CD1
MAROFI F, MOTAVALLI R, SAFONOV V A, et al. CAR T cells in solid tumors: challenges and opportunities [J]. Stem Cell Res Ther, 2021, 12(1): 81. DOI: 10.1186/s13287-020-02128-1. [百度学术]
ZHANG T R, TAI Z G, MIAO F Z, et al. Adoptive cell therapy for solid tumors beyond CAR-T: current challenges and emerging therapeutic advances [J]. J Control Release, 2024, 368: 372-396. DOI: 10.1016/j.jconrel.2024.02.033. [百度学术]
TITOV A, VALIULLINA A, ZMIEVSKAYA E, et al. Advancing CAR T-cell therapy for solid tumors: lessons learned from lymphoma treatment [J]. Cancers, 2020, 12(1): 125. DOI: 10.3390/cancers12010125. [百度学术]
XIE Y J, DOUGAN M, JAILKHANI N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice [J]. Proc Natl Acad Sci U S A, 2019, 116(16): 7624-7631. DOI: 10.1073/pnas.1817147116. [百度学术]
LIU X L, LI J, DENG J W, et al. Targeting Trop2 in solid tumors: a look into structures and novel epitopes [J]. Front Immunol, 2023, 14: 1332489. DOI: 10.3389/fimmu.2023.1332489. [百度学术]
PORCELLINI S, ASPERTI C, CORNA S, et al. CAR T cells redirected to CD44v6 control tumor growth in lung and ovary adenocarcinoma bearing mice [J]. Front Immunol, 2020, 11: 99. DOI: 10.3389/fimmu.2020.00099. [百度学术]
OHNO M, OHKURI T, KOSAKA A, et al. Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts [J]. J Immunother Cancer, 2013, 1: 21. DOI: 10.1186/2051-1426-1-21. [百度学术]
KURAMITSU S, OHNO M, OHKA F, et al. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses [J]. Cancer Gene Ther, 2015, 22(10): 487-495. DOI: 10.1038/cgt.2015.47. [百度学术]
LONG A H, HASO W M, SHERN J F, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors [J]. Nat Med, 2015, 21(6): 581-590. DOI: 10.1038/nm.3838. [百度学术]
ZHANG X, WANG T X, ZHU X N, et al. GMP development and preclinical validation of CAR-T cells targeting a lytic EBV antigen for therapy of EBV-associated malignancies [J]. Front Immunol, 2023, 14: 1103695. DOI: 10.3389/fimmu. 2023.1103695. [百度学术]
WONG K U, SHI J X, LI P, et al. Assessment of chimeric antigen receptor T cytotoxicity by droplet microfluidics in vitro [J]. Antib Ther, 2022, 5(2): 85-99. DOI: 10.1093/abt/tbac008. [百度学术]
DEHBASHI M, HOJATI Z, MOTOVALI-BASHI M, et al. A novel CAR expressing NK cell targeting CD25 with the prospect of overcoming immune escape mechanism in cancers [J]. Front Oncol, 2021, 11: 649710. DOI: 10.3389/fonc.2021.649710. [百度学术]
SONG X M, ZHANG Y R, LV X Y, et al. Noninvasive longitudinal PET/CT imaging of CAR T cells using PSMA reporter gene [J]. Eur J Nucl Med Mol Imaging, 2024, 51(4): 965-977. DOI: 10.1007/s00259-023-06508-6. [百度学术]
KATOR S, ZURKO J, WEBB B J, et al. Disseminated toxoplasmosis and haemophagocytic lymphohistiocytosis following chimeric antigen receptor T-cell therapy [J]. Br J Haematol, 2020, 189(1): e4-e6. DOI: 10.1111/bjh.16402. [百度学术]
GRECO B, MALACARNE V, GIRARDI F D, et al. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies [J]. Sci Transl Med, 2022, 14(628): eabg3072. DOI: 10.1126/scitranslmed.abg3072. [百度学术]
OU Z L, DOU X L, TANG N, et al. Pressure increases PD-L1 expression in A549 lung adenocarcinoma cells and causes resistance to anti-ROR1 CAR T cell-mediated cytotoxicity [J]. Sci Rep, 2022, 12(1): 6919. DOI: 10.1038/s41598-022-10905-6. [百度学术]
FABIAN K P, PADGET M R, DONAHUE R N, et al. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations [J]. J Immunother Cancer, 2020, 8(1): e000450. DOI: 10.1136/jitc-2019-000450. [百度学术]
FU Z W, LI S J, HAN S F, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy [J]. Signal Transduct Target Ther, 2022, 7(1): 93. DOI: 10.1038/s41392-022-00947-7. [百度学术]
TSUCHIKAMA K, AN Z Q. Antibody-drug conjugates: recent advances in conjugation and linker chemistries [J]. Protein Cell, 2018, 9(1): 33-46. DOI: 10.1007/s13238-016-0323-0. [百度学术]
LIU G N, RUI W, ZHAO X Q, et al. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment [J]. Cell Mol Immunol, 2021, 18(5): 1085-1095. DOI: 10.1038/s41423-021-00655-2. [百度学术]
BAJGAIN P, TAWINWUNG S, D’ELIA L, et al. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation [J]. J Immunother Cancer, 2018, 6(1): 34. DOI: 10.1186/s40425-018-0347-5. [百度学术]
SARANGI S C, SOPORY P, PATTNAIK S S, et al. Antibody-drug conjugates, cancer immunotherapy, and metronomic chemotherapy as novel approaches in cancer management [J]. Indian J Pharmacol, 2020, 52(5): 402-413. DOI: 10.4103/ijp.IJP_475_18. [百度学术]
MARTINEZ M, MOON E K. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment [J]. Front Immunol, 2019, 10: 128. DOI: 10.3389/fimmu.2019.00128. [百度学术]
COLEMAN N, YAP T A, HEYMACH J V, et al. Antibody-drug conjugates in lung cancer: dawn of a new era? [J]. NPJ Precis Oncol, 2023, 7(1): 5. DOI: 10.1038/s41698-022-00338-9. [百度学术]
WEI F, CHENG X X, XUE J Z, et al. Emerging strategies in TCR-engineered T cells [J]. Front Immunol, 2022, 13: 850358. DOI: 10.3389/fimmu.2022.850358. [百度学术]
HAYDEN P J, RODDIE C, BADER P, et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA) [J]. Ann Oncol, 2022, 33(3): 259-275. DOI: 10.1016/j.annonc.2021.12.003. [百度学术]
ENTEZAM M, SANAEI M J, MIRZAEI Y, et al. Current progress and challenges of immunotherapy in gastric cancer: a focus on CAR-T cells therapeutic approach [J]. Life Sci, 2023, 318: 121459. DOI: 10.1016/j.lfs.2023.121459. [百度学术]
QU J J, MEI Q H, CHEN L J, et al. Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): current status and future perspectives [J]. Cancer Immunol Immunother, 2021, 70(3): 619-631. DOI: 10.1007/s00262-020-02735-0. [百度学术]
HUARTE E, O’CONNOR R S, PEEL M T, et al. Itacitinib (INCB039110), a JAK1 inhibitor, reduces cytokines associated with cytokine release syndrome induced by CAR T-cell therapy [J]. Clin Cancer Res, 2020, 26(23): 6299-6309. DOI: 10.1158/1078-0432.CCR-20-1739. [百度学术]
WANG J Y, WANG L. CAR-T cell therapy: where are we now, and where are we heading? [J]. Blood Sci, 2023, 5(4): 237-248. DOI: 10.1097/BS9.0000000000000173. [百度学术]
XUE Y R, REN Y Q, YAN B, et al. Successful re-challenge of dabrafenib-trametinib combination therapy in advanced BRA
KHAN I, KHAN N, WOLFSON N, et al. Safety of CAR-T cell therapy in patients with renal failure/acute kidney injury: focused review [J]. Clin Hematol Int, 2023, 5(2/3): 122-129. DOI: 10.1007/s44228-023-00037-7. [百度学术]
QIN D Y, LI D, ZHANG B X, et al. Potential lung attack and lethality generated by EpCAM-specific CAR-T cells in immunocompetent mouse models [J]. Oncoimmunology, 2020, 9(1): 1806009. DOI: 10.1080/2162402X.2020.1806009. [百度学术]
QUINTARELLI C, ORLANDO D, BOFFA I, et al. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma [J]. Oncoimmunology, 2018, 7(6): e1433518. DOI: 10.1080/2162402X.2018.1433518. [百度学术]
TIAN Y G, LI Y L, SHAO Y P, et al. Gene modification strategies for next-generation CAR T cells against solid cancers [J]. J Hematol Oncol, 2020, 13(1): 54. DOI: 10.1186/s13045-020-00890-6. [百度学术]
USLU U, CASTELLI S, JUNE C H. CAR T cell combination therapies to treat cancer [J]. Cancer Cell, 2024, 42(8): 1319-1325. DOI: 10.1016/j.ccell.2024.07.002. [百度学术]
CHEN L, CHEN F K, LI J D, et al. CAR-T cell therapy for lung cancer: potential and perspective [J]. Thorac Cancer, 2022, 13(7): 889-899. DOI: 10.1111/1759-7714.14375. [百度学术]
ADUSUMILLI P S, ZAUDERER M G, RIVIÈRE I, et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab [J]. Cancer Discov, 2021, 11(11): 2748-2763. DOI: 10.1158/2159-8290.CD-21-0407. [百度学术]
MIN J T, LONG C R, ZHANG L, et al. C-Met specific CAR-T cells as a targeted therapy for non-small cell lung cancer cell A549 [J]. Bioengineered, 2022, 13(4): 9216-9232. DOI: 10.1080/21655979.2022.2058149. [百度学术]