摘要
DNA损伤修复是指纠正DNA两条单链间错配的碱基、清除DNA链上受损的碱基、恢复DNA正常结构的过程。细胞内存在多种机制来应对不同类型的DNA损伤,同源重组修复便是重要的修复机制之一。在同源重组修复过程中,RNA的合成发挥着重要作用,而RNA甲基化修饰作为一个普遍存在于真核细胞中的调控机制,也参与了这一复杂的修复过程。肿瘤发生过程中普遍存在RNA甲基化修饰失调导致的DNA损伤累积,从而引起肿瘤的恶性转化。此外,RNA甲基化修饰还可以影响放化疗后细胞对DNA损伤的修复能力,使肿瘤细胞的放化疗敏感性发生改变,进而影响治疗效果。本文综述了目前已知的不同类型RNA甲基化修饰在DNA损伤修复过程中的作用,并进一步分析RNA甲基化修饰介导的DNA损伤修复异常在肿瘤临床诊断、预后判断和作为治疗靶点等方面的应用前景。
RNA修饰是一种动态、可逆且广泛存在的表观遗传学调控机制,目前已知的RNA化学修饰达170多
在自然界,RNA修饰广泛存在于多种核苷酸中,如A、U、C、G、I,其中甲基化修饰约占修饰总量的2/
RNA的
现有研究表明,
此外,有研究也指出了METTL16的相关作用,其表达下调可导致细胞中
蛋白名称 | 细胞定位 | 功能 | |
---|---|---|---|
与 |
YTHDC | 细胞核 |
优先结合非编码RNA中的 |
YTHDC | 细胞核和细胞质 |
以弱亲和力结合 | |
YTHDF | 细胞核 |
优先结合胞质mRNA中的 | |
YTHDF | 细胞核 |
优先与胞质mRNA中的 | |
YTHDF | 细胞核 |
优先结合胞质mRNA中的 | |
eIF | 细胞质 |
结合RNA 5’UTR上发生 | |
METTL | 细胞核和细胞质 |
结合细胞质中的一小部分 | |
Ribosom | 细胞质 |
在翻译过程中识别 | |
由 |
HNRNPC、HNRNP | 细胞核 |
优先结合非编码RNA;可能结合mRNA上的 |
HNRNPA2B | 细胞核 |
优先结合非编码RNA;介导 | |
IGF2BP1、IGF2BP2、IGF2BP | 细胞核和细胞质 |
以弱亲和力结合 | |
与 |
FMR | 细胞核和细胞质 |
以弱亲和力识别编码序列中的 |
注: YTHDC1~2、YTHDF1~3属于YTH家族;eIF3属于eIF家族;HNRNPA2B1、HNRNPC、HNRNPG属于hnRNP家族;IGF2BP1-3属于IGF2BP家族。
Note: YTHDC1~2 and YTHDF1~3 belong to the YTH family. The eIF3 belongs to the eIF family. HNRNPA2B1, HNRNPC and HNRNPG belong to the hnRNP family. IGF2BP1~3 belong to the IGF2BP family.
有研究发现,包括NOL1/NOP2/SUN结构域(NSUN)家族成员(NSUN1~7)、DNA甲基转移酶(DNA methyltransferases, DNMT)同源物DNMT2和tRNA特异性甲基转移酶(tRNA specific methyltransferases, TRDMT)家族成员等在内的10多种
TET(ten-eleven translocation)家族蛋白属于DNA双加氧酶,包括TET1、TET2和TET3,具有甲基化酶的潜力,最初被鉴定对DNA基因组如dsDNA和ssDNA具有氧化作用,后来被发现对ssRNA和DNA-RNA杂交链均可发挥氧化作用,从而介导去甲基
RNA发生
在tRNA中,
DNA因时刻遭受细胞内外源因素的攻击而受到损伤,导致基因组不稳定。这种基因组不稳定性是促进肿瘤发生、发展的重要原因之一。
不同的损伤因素会造成不同的DNA损伤。DNA损伤主要包括DNA单链及双链断裂(DNA double-strand break, DSB)、碱基错配、链间交联
细胞内DNA损伤修复异常可导致DNA突变,危及基因组稳定性,从而介导正常细胞向恶性转化。研究显示,DNA损伤修复通路是肿瘤发生通路之
DNA损伤修复能否有效进行,不仅决定着肿瘤的发生、发展,也决定着肿瘤细胞对放化疗等相关治疗的敏感性或耐受性。放疗、拓扑异构酶抑制剂、烷化剂(如替莫唑胺)、DNA链交联剂(如顺铂、环磷酰胺)等均可诱导不同形式的DNA损伤,并启动不同形式的DNA损伤修
基因 | 基因表达蛋白在DNA损伤修复中的作用 | 常见突变肿瘤 | 小分子靶向药物 |
---|---|---|---|
BRCA1/2 | 通过同源重组通路参与DNA双链损伤的修复 | 乳腺癌、卵巢癌等 | PARPi(如奥拉帕利、尼拉帕利) |
ATM | 使组蛋白H2AX在DSB后发生磷酸化,是DNA修复的基础 | 直肠癌、胃癌、胰腺癌等 | ATM抑制剂(如AZD0156),与其它药物联合使用 |
ATR | 被各种单链损伤激活,参与多种DNA损伤的修复 | 肺癌、乳腺癌、咽喉癌等 | ATR抑制剂(如berzosertib),与顺铂(体内)联合使用时提高抗肿瘤活性 |
CHK1 | 是ATR下游的蛋白激酶及S、G2/M细胞周期检查点的关键调节因子 | 鼻咽癌、乳腺癌等 | CHK1抑制剂(MK8776、prexasertib),显示出单药和联合活性 |
WEE1 | 与CHK1具有协同效应,调节细胞周期蛋白依赖性激酶,不直接对DNA损伤作出反应 | 直肠癌、卵巢癌等 | WEE1抑制剂(如AZD1775),具有单药和联合(与拓扑异构酶抑制剂)活性 |
DSB是一种最具有细胞毒性的DNA损伤,未及时修复会损害基因组稳定性和染色体完整性。在哺乳动物中,DSB修复主要有两个途径:同源重组(homologous recombination, HR)和NHEJ。相关研究显示,RNA在DNA损伤反应(DNA-damage response, DDR)中发挥了重要的作用,尤其是dilncRNA和DDRNA被报道可能存在于DSB位点,从而促进DNA双链断裂修复(DNA double-strand breaks repair, DSBR
DNA-RNA杂交链可招募RAD51和BRCA1进行HRR。在缺失METTL3和YTHDC1的细胞中,HRR受损导致基因组不稳定。这与在伴随转录时存在的特殊结构R环密切相关,这一特殊结构由DNA-RNA杂交链和另一条DNA单链形成,其在DNA损伤位点处的累积阻碍了修复过程的进行。这说明在DSB介导的HRR过程中,METTL3/
此外,研究发现MEETL3可催化端粒重复序列RNA(telomeric repeat-containing RNA, TERRA)形成
RNA
基因 | 作用 |
---|---|
YAP | METTL3增强YAP1 m6A甲基化,使YAP1在人类肺癌细胞系中稳定表达,且YAP1水平升高可介导非小细胞肺癌对顺铂的耐药性 |
MCM2/ |
YTHDF2的O-GlcNAc糖基化修饰增强,以 |
MFSD2 |
IGF2BP2 识别 |
APO | FTO通过IGF2BP2介导的m6A修饰抑制APOE表达,且可能通过调节IL-6/JAK2/STAT3信号通路来抑制甲状腺乳头状癌(papillary thyroid carcinoma, PTC)的糖酵解代谢,从而抑制PTC生长 |
PER |
ALKBH5通过消除 |
基因 | 作用 |
---|---|
HDG |
YBX1通过冷休克结构域(cold shock domain, CSD)上的W65吲哚环识别 |
p5 |
NSUN2在胃癌组织中高表达,通过依赖 |
ICAM- | NSUN2通过上调ICAM-1 mRNA甲基化,增强ICAM-1的表达,影响血管炎症以及动脉硬化 |
IL-17 |
NSUN2在大鼠T淋巴细胞中通过使C466位点发生甲基化来促进IL-17A的翻译;然而,尚不清楚IL-17A mRNA的 |
故在HRR中,TRDMT1/FMRP/TET1起着关键作用。若TRDMT1缺失,则HR将遭到破坏,细胞对DSB的敏感性增强,RAD51和RAD52将无法定位到DNA损伤位点。若FMRP缺失,R环则在DNA损伤位点累积,阻碍HRR过程,相对应地,RAD51和RAD52也会滞留在修复过程后期的DNA损伤位点。
不仅如此,敲低TRDMT1和FMRP还可提高肿瘤细胞对放疗和PARPi的敏感
综上所述,RNA甲基化修饰对DNA损伤的调控在肿瘤发生和化疗耐药中都发挥了至关重要的作用,相关修饰蛋白更是这一过程中的关键因子。METTL3、FTO、YTHDC1-2、YTHDF1-3和IGF2BP1-3蛋白能促进肿瘤的发生,METTL3、METTL14、FTO、ALKBH5、NSUN2和NSUN6蛋白则能促进或抑制肿瘤细胞的分化与增殖。同样,METTL3、FTO、ALKBH5、TRDMT1和FMRP可以影响肿瘤细胞对放化疗的敏感性或耐药性。然而,RNA甲基化修饰对DNA损伤修复调节的研究仍较浅显,如其它甲基化修饰的相关机制在DNA损伤修复中的作用,以及它们之间是否存在协同或拮抗的关系等,尚待进一步探讨。
因此,未来的研究一方面可通过检测RNA甲基化修饰蛋白与肿瘤细胞的靶向mRNA选择性之间的相关性,探明更多的机制及相关蛋白的更多功能。另一方面,可根据这些蛋白的功能,通过化学合成、虚拟筛选等多种方法开发出更有效的选择性抑制剂和激活剂。未来,小分子RNA甲基化修饰蛋白抑制剂或激活剂可作为单一疗法或与其他抗肿瘤药物联合应用,为以RNA甲基化修饰蛋白异常为特征的肿瘤患者提供新的治疗方案,实现RNA甲基化修饰作为新型肿瘤标志物的价值。
参考文献
BOCCALETTO P, STEFANIAK F, RAY A, et al. MODOMICS: a database of RNA modification pathways. 2021 update [J]. Nucleic Acids Res, 2022, 50(D1): D231-D235. DOI: 10.1093/nar/gkab1083. [百度学术]
HELM M, MOTORIN Y. Detecting RNA modifications in the epitranscriptome: predict and validate [J]. Nat Rev Genet, 2017, 18(5): 275-291. DOI: 10.1038/nrg.2016.169. [百度学术]
PAN X Y, HUANG C, LI J. The emerging roles of
MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons [J]. Cell, 2012, 149(7): 1635-1646. DOI: 10.1016/j.cell.2012.05.003. [百度学术]
DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq [J]. Nature, 2012, 485(7397): 201-206. DOI: 10.1038/nature11112. [百度学术]
DENG S, ZHANG J L, SU J C, et al. RNA
HUANG H L, WENG H Y, CHEN J J.
ZHANG W Q, SONG M S, QU J, et al. Epigenetic modifications in cardiovascular aging and diseases [J]. Circ Res, 2018, 123(7): 773-786. DOI: 10.1161/CIRCRESAHA.118.312497. [百度学术]
YIN H L, JU Z, ZHENG M H, et al. Loss of the m6A methyltransferase METTL3 in monocyte-derived macrophages ameliorates Alzheimer’s disease pathology in mice [J]. PLoS Biol, 2023, 21(3): e3002017. DOI: 10.1371/journal.pbio.3002017. [百度学术]
DENG X L, SU R, WENG H Y, et al. RNA
LIU S P, ZHUO L J, WANG J J, et al. METTL3 plays multiple functions in biological processes [J]. Am J Cancer Res, 2020, 10(6): 1631-1646. [百度学术]
YANG Z Z, YANG S, CUI Y H, et al. METTL14 facilitates global genome repair and suppresses skin tumorigenesis [J]. Proc Natl Acad Sci USA, 2021, 118(35): e2025948118. DOI: 10.1073/pnas.2025948118. [百度学术]
LI Q, LI X, TANG H, et al. NSUN2-mediated
SUN L H, ZHANG Y, YANG B Y, et al. Lactylation of METTL16 promotes cuproptosis via
MENDEL M, CHEN K M, HOMOLKA D, et al. Methylation of structured RNA by the
PENDLETON K E, CHEN B B, LIU K Q, et al. The U6 snRNA
ZENG X Y, ZHAO F, CUI G F, et al. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma [J]. Nat Cancer, 2022, 3(9): 1088-1104. DOI: 10.1038/s43018-022-00429-3. [百度学术]
JIA G F, FU Y, ZHAO X, et al.
WANG J Y, WANG J Q, GU Q, et al. The biological function of
UEDA Y, OOSHIO I, FUSAMAE Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells [J]. Sci Rep, 2017, 7: 42271. DOI: 10.1038/srep42271. [百度学术]
LASMAN L, KRUPALNIK V, VIUKOV S, et al. Context-dependent functional compensation between Ythdf
LIU T, WEI Q L, JIN J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation [J]. Nucleic Acids Res, 2020, 48(7): 3816-3831. DOI: 10.1093/nar/gkaa048. [百度学术]
FANG R P, CHEN X, ZHANG S C, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma [J]. Nat Commun, 2021, 12(1): 177. DOI: 10.1038/s41467-020-20379-7. [百度学术]
SHI H L, WANG X, LU Z K, et al. YTHDF3 facilitates translation and decay of
XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear
MAO Y H, DONG L M, LIU X M, et al.
SUN Y, DONG D, XIA Y H, et al. YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance [J]. Cell Death Dis, 2022, 13(3): 230. DOI: 10.1038/s41419-022-04672-5. [百度学术]
CAO G C, LI H B, YIN Z N, et al. Recent advances in dynamic
SONG H W, FENG X, ZHANG H, et al. METTL3 and ALKBH5 oppositely regulate
LEPPEK K, DAS R, BARNA M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them [J]. Nat Rev Mol Cell Biol, 2018, 19(3): 158-174. DOI: 10.1038/nrm.2017.103. [百度学术]
HUANG G Z, WU Q Q, ZHENG Z N, et al.
HUANG H L, WENG H Y, SUN W J, et al. Recognition of RNA
EDENS B M, VISSERS C, SU J, et al. FMRP modulates neural differentiation through
EDELHEIT S, SCHWARTZ S, MUMBACH M R, et al. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals
GAO Y, WANG Z, ZHU Y D, et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma [J]. Cancer Sci, 2019, 110(11): 3510-3519. DOI: 10.1111/cas.14190. [百度学术]
SUN Z, XUE S L, ZHANG M Y, et al. Aberrant NSUN2-mediated
SELMI T, HUSSAIN S, DIETMANN S, et al. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6 [J]. Nucleic Acids Res, 2021, 49(2): 1006-1022. DOI: 10.1093/nar/gkaa1193. [百度学术]
DENIZIO J E, LIU M Y, LEDDIN E M, et al. Selectivity and promiscuity in TET-mediated oxidation of 5-methylcytosine in DNA and RNA [J]. Biochemistry, 2019, 58(5): 411-421. DOI: 10.1021/acs.biochem.8b00912. [百度学术]
WU X J, ZHANG Y. TET-mediated active DNA demethylation: mechanism, function and beyond [J]. Nat Rev Genet, 2017, 18(9): 517-534. DOI: 10.1038/nrg.2017.33. [百度学术]
GUALLAR D, BI X J, PARDAVILA J A, et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells [J]. Nat Genet, 2018, 50(3): 443-451. DOI: 10.1038/s41588-018-0060-9. [百度学术]
WANG J Z, ZHU W, HAN J, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer [J]. Cancer Commun, 2021, 41(7): 560-575. DOI: 10.1002/cac2.12158. [百度学术]
CHEN X, LI A, SUN B F, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs [J]. Nat Cell Biol, 2019, 21(8): 978-990. DOI: 10.1038/s41556-019-0361-y. [百度学术]
HAAG S, KRETSCHMER J, BOHNSACK M T. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates
PANDOLFINI L, BARBIERI I, BANNISTER A J, et al. METTL1 promotes let-7 microRNA processing via
HAN H, YANG C L, MA J Y, et al.
CURTIN N J. DNA repair dysregulation from cancer driver to therapeutic target [J]. Nat Rev Cancer, 2012, 12(12): 801-817. DOI: 10.1038/nrc3399. [百度学术]
ZHANG C F, CHEN L P, PENG D, et al. METTL3 and
BLUM A, WANG P, ZENKLUSEN J C. SnapShot: TCGA-analyzed tumors [J]. Cell, 2018, 173(2): 530. DOI: 10.1016/j.cell.2018.03.059. [百度学术]
GORGOULIS V G, VASSILIOU L V F, KARAKAIDOS P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions [J]. Nature, 2005, 434(7035): 907-913. DOI: 10.1038/nature03485. [百度学术]
HALAZONETIS T D, GORGOULIS V G, BARTEK J. An oncogene-induced DNA damage model for cancer development [J]. Science, 2008, 319(5868): 1352-1355. DOI: 10.1126/science.1140735. [百度学术]
BASOURAKOS S P, LI L K, APARICIO A M, et al. Combination platinum-based and DNA damage response-targeting cancer therapy: evolution and future directions [J]. Curr Med Chem, 2017, 24(15): 1586-1606. DOI: 10.2174/0929867323666161214114948. [百度学术]
CHEN Y K, JIANG T, ZHANG H Y, et al. LRRC31 inhibits DNA repair and sensitizes breast cancer brain metastasis to radiation therapy [J]. Nat Cell Biol, 2020, 22(10): 1276-1285. DOI: 10.1038/s41556-020-00586-6. [百度学术]
MICHELINI F, PITCHIAYA S, VITELLI V, et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks [J]. Nat Cell Biol, 2017, 19(12): 1400-1411. DOI: 10.1038/ncb3643. [百度学术]
AYMARD F, BUGLER B, SCHMIDT C K, et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks [J]. Nat Struct Mol Biol, 2014, 21(4): 366-374. DOI: 10.1038/nsmb.2796. [百度学术]
KESKIN H, SHEN Y, HUANG F, et al. Transcript-RNA-templated DNA recombination and repair [J]. Nature, 2014, 515(7527): 436-439. DOI: 10.1038/nature13682. [百度学术]
XIANG Y, LAURENT B, HSU C H, et al. RNA
ZHOU S, BAI Z L, XIA D, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation [J]. Mol Carcinog, 2018, 57(5): 590-597. DOI: 10.1002/mc.22782. [百度学术]
LI Y, XIA L J, TAN K F, et al.
SHENG Y, WEI J B, YU F, et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication [J]. Blood, 2021, 138(26): 2838-2852. DOI: 10.1182/blood.2021011707. [百度学术]
CHENG Y M, XIE W, PICKERING B F, et al.
LIU J, DOU X Y, CHEN C Y, et al.
ROUNDTREE I A, LUO G Z, ZHANG Z J, et al. YTHDC1 mediates nuclear export of
LI S S, QI Y F, YU J C, et al. Nuclear aurora kinase A switches
ABAKIR A, GILES T C, CRISTINI A, et al.
CHEN L P, ZHANG C F, MA W B, et al. METTL3-mediated
TAKETO K, KONNO M, ASAI A, et al. The epitranscriptome
LIN Z Y, NIU Y, WAN A, et al. RNA
WENG H Y, HUANG F, YU Z J, et al. The
JIN D, GUO J W, WU Y, et al.
YANG Y, YAN Y, YIN J X, et al. O-GlcNAcylation of YTHDF2 promotes HBV-related hepatocellular carcinoma progression in an
CHENG Y, GAO Z Y, ZHANG T T, et al. Decoding
HUANG J P, SUN W, WANG Z H, et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an
GUO X Y, LI K, JIANG W L, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an
CHEN H, YANG H B, ZHU X L, et al.
YANG H B, WANG Y M, XIANG Y F, et al. FMRP promotes transcription-coupled homologous recombination via facilitating TET1-mediated m5C RNA modification demethylation [J]. Proc Natl Acad Sci USA, 2022, 119(12): e2116251119. DOI: 10.1073/pnas.2116251119. [百度学术]
MEI L, SHEN C, MIAO R, et al. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p5
LUO Y H, FENG J, XU Q B, et al. NSun2 deficiency protects endothelium from inflammation via mRNA methylation of ICAM-1 [J]. Circ Res, 2016, 118(6): 944-956. DOI: 10.1161/CIRCRESAHA.115.307674. [百度学术]
WANG N, TANG H, WANG X, et al. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes [J]. Biochem Biophys Res Commun, 2017, 493(1): 94-99. DOI: 10.1016/j.bbrc.2017.09.069. [百度学术]