摘要
表皮生长因子受体(EGFR)是原癌基因c-erbB-1的表达产物,具有酪氨酸激酶活性。EGFR与配体结合可以激活下游信号通路并导致肿瘤细胞的增殖及侵袭。在肿瘤细胞中,EGFR过度表达可以激活骨吸收过程,导致肿瘤骨转移。表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)主要包括吉非替尼、厄洛替尼、阿法替尼、奥希替尼等,这些药物可以抑制骨吸收和肿瘤骨转移,但也会导致骨形成障碍。联合用药可以解决耐药等问题,并改善药物对骨组织的影响。本文对常见的EGFR-TKIs在骨形成、骨吸收和肿瘤骨转移等过程中对骨组织的影响及其机制进行综述,对不同EGFR-TKIs联合用药的优点及其对骨组织的影响进行归纳,并就EGFR-TKIs对骨组织负面影响的解决方案进行展望。
表皮生长因子受体(epidermal growth factor receptor, EGFR)是原癌基因c-erbB-1(HER-1)的表达产物,具有酪氨酸激酶活
除了引起肿瘤细胞增殖,EGFR还与骨转移和骨形成障碍有关。肿瘤细胞中的去整合素和金属蛋白酶可激活EGFR,直接刺激肿瘤细胞增殖。EGFR可抑制成骨细胞中骨保护素的表达,并增强破骨细胞分化,共同引起肿瘤细胞的骨转
表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor tyrosine kinase inhibitor, EGFR-TKI)主要包括吉非替尼、厄洛替尼、阿法替尼、达克替尼、奥希替尼和阿美替尼等,这些药物通过抑制EGFR相关通路来抑制肿瘤细胞的增殖、扩散。
NCT编号 | 开始日期 | 结束日期 | 样本量 | 研究阶段 | 肿瘤类型 | 治疗方案 | 参考文献 |
---|---|---|---|---|---|---|---|
NCT02804776 | 2016.06.14 | 2018.02.21 | 15 | Phase 2 | EGFR突变型肺癌 | 吉非替尼 |
[ |
NCT03486496 | 2018.06.02 | 2020.01.01 | 50 | Phase 2 | EGFR突变型肺癌 |
吉非替尼 黄连素 |
[ |
NCT04143607 | 2019.07.23 | 2023.11.30(预计) | 334 | Phase 3 | NSCLC | 吉非替尼 |
[ |
NCT02080078 | 2014.09 | 2019.04.30 | 15 | Phase 1 |
NSCLC 晚期实体肿瘤 |
厄洛替尼 茶碱 |
[ |
NCT02942095 | 2016.10.21 | 2023.3.31(预计) | 9 | Phase 1 | 晚期实体肿瘤 |
厄洛替尼 伊沙佐米 |
[ |
NCT01967095 | 2013.10.15 | 2018.11.08 | 53 | Phase 1 | EGFR突变型肺癌 | 厄洛替尼 |
[ |
NCT04814056 | 2021.06.01 | 2024.01.31(预计) | 15 | Phase 4 | NSCLC | 阿法替尼 |
[ |
NCT02747953 | 2016.04.22 | 2021.03 | 50 | Phase 2 | NSCLC | 阿法替尼 |
[ |
NCT03827070 | 2019.05.05 | 2022.3.10 | 12 | Phase 1 | NSCLC | 阿法替尼 |
[ |
NCT01999985 | 2013.11.26 | 2019.3.10 | 25 | Phase 1 | NSCLC |
阿法替尼 达沙替尼 |
[ |
NCT04413201 | 2020.05.28 | 2024.07.30(预计) | 126 | Phase 4 | EGFR突变型肺癌 |
奥希替尼 阿法替尼 |
[ |
NCT04870190 | 2021.06.01 | 2024.06.01(预计) | 232 | Phase 3 | EGFR突变型肺癌 |
奥希替尼 阿美替尼 |
[ |
NCT04988607 | 2021.08 | 2025.05(预计) | 90 | Phase 2 | EGFR突变型肺癌 |
奥希替尼 阿瓦斯汀 |
[ |
EGFR-TKIs在治疗肿瘤的同时还会影响骨组织。EGFR-TKIs能够显著降低破骨细胞前体细胞中核因子κB受体活化因子配体(receptor activator of nuclear factor kappa-B ligand, RANKL)的激活和RANKL依赖性破骨细胞的形成,并导致半胱天冬酶介导的已分化破骨细胞凋亡,从而预防肿瘤诱导的骨质溶解,减少肿瘤溶骨性骨转

图1 EGFR-TKIs对骨组织的影响机制
Fig. 1 Mechanism of the effects of EGFR-TKIs on bone tissue
吉非替尼是一种选择性EGFR-TKI,可阻碍肿瘤的生长、转移和血管生成,并增加肿瘤细胞的凋亡,多用于治疗非小细胞肺癌(non-small cell lung cancer, NSCLC)。除发挥治疗作用外,吉非替尼还通过抑制溶骨性破坏减少肿瘤的骨转移。吉非替尼不仅可以抑制软骨细胞诱导的破骨细胞分化,还能抑制骨保护素(osteoprotegerin, OPG)的表达和减少分化的成骨细胞中单核细胞趋化蛋白-1(monocyte chemotactic protein 1, MCP-1)的表达,共同抑制溶骨性肿瘤骨转
厄洛替尼通过阻止EGFR磷酸化可逆性抑制特定类型的EGFR突变,常用于NSCLC或晚期小细胞肺癌首次化疗无效后。厄洛替尼主要通过抑制肿瘤细胞中溶骨性因子的产生、RANKL诱导破骨分化,减少溶骨性肿瘤骨转移的发生。首先,厄洛替尼可逆转ERK激活引起的肿瘤细胞分泌PTHrP、IL-6、IL-8等溶骨因子以及与血管生成密切相关的血管内皮生长因子(vascular endothelial growth factor, VEGF)的产生。而溶骨因子减少可进一步降低RANKL的表
阿法替尼与第一代EGFR-TKIs不同,它能通过与C797形成共价键,不可逆地与EGFR结合,常用于骨、脑、神经系统转移的NSCL
奥希替尼是第三代EGFR-TKI,已被广泛用于第一代或第二代EGFR-TKIs治疗失败的获得性EGFR T790M突变NSCLC患者的标准治
拉帕替尼是ErbB1和ErbB2酪氨酸激酶的双重可逆抑制剂,临床主要用于ErbB2或HER2过度表达的转移性乳腺癌患者的靶向治疗。拉帕替尼通过靶向ErbB1和ErbB2抑制Wnt10b的表达和/或增加Wnt拮抗物质的生成,从而加剧骨破坏过程。拉帕替尼还通过降低OSX表达水平和骨分化潜能,促进过氧化物酶体增殖物激活受体γ亚型(peroxisome proliferator-activated receptor γ, PPARγ)生成,从而使成骨细胞的成骨/脂肪生成潜能发生转换,造成骨髓脂肪含量增加,阻碍成骨。有研究证明,单独使用拉帕替尼或联合紫杉醇可通过上述机制导致大鼠的骨吸收加剧、小梁骨丢失和骨髓脂肪含量增
众所周知,药物的使用会伴随着耐药性的产生。近年来,学术界在EGFR-TKIs耐药的分子机制方面取得了长足进步。约60%的EGFR-TKIs耐药性的产生是由于药物靶点内出现了新的突变,最常见的突变为T790M,且已被证明能改变药物结合和突变EGFR的酶活性,其他突变还包括MET扩增、ERBB2扩增
吉非替尼作为第一代EGFR-TKI,常见的耐药机制是EGFR T790M突变。伏立诺他可导致肿瘤细胞活性氧(reactive oxygen species, ROS)水平升高,从而通过ROS/NOX3/MsrA轴调节细胞内的氧化还原平衡。被抑制的MsrA通过ROS对790M的氧化促进了EGFR T790M的降解,从而使EGFR T790M阳性细胞对吉非替尼重新敏
联合用药不仅能解决单药耐药问题,还能增强吉非替尼抑制肿瘤骨转移的作用。双膦酸盐是一类广泛用于治疗骨质疏松症的药物,能抑制破骨细胞活性,延缓转移性肿瘤的骨吸收过程。双膦酸盐药物唑来膦酸(zoledronic acid, Zol)与吉非替尼联合不仅可以通过抑制JAK/STAT3信号逆转耐药,同时还可增强对肿瘤骨转移的抑制作
与吉非替尼相似,厄洛替尼常见的突变机制也是EGFR T790M突变。雷莫芦单克隆抗体能针对VEGF受体2,限制肿瘤形成过程中的血管生成,有效对抗EGFR T790M突变,提高厄洛替尼对NSCLC的治疗效
相比第一代EGFR-TKIs,阿法替尼对EGFR敏感突变(即19号外显子缺失和L858R)和EGFR T790M耐药突变的治疗有效率更高,但EGFR T790M耐药突变仍然是最主要的耐药机
奥希替尼作为第三代EGFR-TKI,对EGFR致敏突变体和T790M耐药肿瘤均具有活性。然而,其在使用过程中仍会发生二次获得性耐药突变,如EGFR基因外显子20的C797S突变、L718Q突变、MET扩增、BRAF V600E突变。多靶点联合用药能在很大程度上克服奥希替尼的耐药现象。例如,曲妥珠单抗能抑制HER-2磷酸化和AKT、MAPK通路的激活,与奥希替尼联合使用可克服HER-2过表达造成的奥希替尼单药耐
有研究证明,多数患者单独使用拉帕替尼时会在6个月内产生获得性耐
联合用药不仅能解决单药耐药的问题,还能增强拉帕替尼促进骨吸收、抑制骨形成的作用。拉帕替尼联合紫杉醇可通过抑制Wnt10b表达和/或增强Wnt拮抗剂的表达减弱骨骼中Wnt/β-连环蛋白信号通路,抑制骨形成,增加破骨细胞募集,促进成骨/脂肪生成转换。既往研究显示,联合用药可导致转移性乳腺癌小鼠成骨标志物骨钙素减少和PPARγ表达增加,加重骨小梁丢
EGFR-TKIs可破坏骨形成过程和骨吸收过程的动态平衡,对正常骨组织的发育和重塑造成不良影响。而联合用药的不良反应也常表现为骨质流失、骨代谢障碍等,这可能是由于EGFR-TKIs与其他药物协同增强对正常骨生长发育的作用所致。由于EGFR信号转导对于正常颅面发育是必需的,因此使用EGFR-TKIs作为治疗药物可能增加患者颌骨坏死的风险。目前,EGFR-TKIs导致的颌骨坏死多与双膦酸盐治疗相关,EGFR-TKIs可通过EGFR/AKT/PI3K信号通路部分协同双膦酸盐诱发颌骨坏
对于EGFR-TKIs引起的骨损伤,可采用常规药物进行对症治疗。如应用雌激素及其受体调节剂、降钙素等药物抑制破骨细胞的骨吸收过程,应用甲状旁腺激素、前列腺素E2及氟化物等促进骨形成过程,或者采用钙剂和维生素D促进骨矿化过程。此外,分子靶向药物也是治疗颌骨坏死的可行方案,如单克隆抗体狄诺塞麦可高亲和力靶向RNAKL,抑制破骨细胞分化成熟,增加骨质量和骨密度。但以上疗法报道均有限,多数临床治疗依然未充分重视EGFR-TKIs引起的骨组织损伤。
EGFR与肿瘤细胞的增殖、发展和侵袭有关,同时,其过度表达还会影响骨生成和溶骨性骨转移。应用于肿瘤治疗的EGFR-TKIs主要包括吉非替尼、厄洛替尼、阿法替尼、奥希替尼等,这些药物可以与肿瘤细胞中的EGFR结合,并抑制EGFR相关通路。近年来,EGFR-TKIs对骨组织的影响逐渐引起研究者的注意。多种EGFR-TKIs均能通过降低RANKL的表达减少软骨诱导的破骨分化,抑制肿瘤引起的骨破坏,减少肿瘤骨转移。随着单一药物耐药性的出现,联合用药日益普遍。联合用药既能通过恢复药物敏感性或多靶点抑制增强对耐药突变肿瘤的抑制,又能进一步增强EGFR-TKIs对骨组织的各种影响。EGFR-TKIs可以破坏骨形成过程和骨吸收过程的动态平衡,对正常骨组织的发育和重塑造成不良影响。遗憾的是,目前尚无有效的针对EGFR-TKIs致骨损伤的普适性或权威性治疗方案。然而,通过影响EGFR-TKIs的作用靶点来避免骨坏死的研究正在进行。例如,Lee
参考文献
HARRISON P T, VYSE S, HUANG P H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer [J]. Semin Cancer Biol, 2020, 61: 167-179. DOI: 10.1016/j.semcancer.2019.09.015. [百度学术]
MENG T, JIN J L, JIANG C, et al. Molecular targeted therapy in the treatment of chordoma: a systematic review [J]. Front Oncol, 2019, 9: 30. DOI: 10.3389/fonc.2019.00030. [百度学术]
LIU Q, YU S N, ZHAO W H, et al. EGFR-TKIs resistance via EGFR-independent signaling pathways [J]. Mol Cancer, 2018, 17(1): 53. DOI: 10.1186/s12943-018-0793-1. [百度学术]
KORBECKI J, SIMIŃSKA D, KOJDER K, et al. Fractalkine/CX3CL1 in neoplastic processes [J]. Int J Mol Sci, 2020, 21(10): 3723. DOI: 10.3390/ijms21103723. [百度学术]
LINDER M, HECKING M, GLITZNER E, et al. EGFR controls bone development by negatively regulating mTOR-signaling during osteoblast differentiation [J]. Cell Death Differ, 2018, 25(6): 1094-1106. DOI: 10.1038/s41418-017-0054-7. [百度学术]
INFANTE M, FABI A, COGNETTI F, et al. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives [J]. J Exp Clin Cancer Res, 2019, 38(1): 12. DOI: 10.1186/s13046-018-1001-2. [百度学术]
ClinicalTrials. PRe-Operative gefitinib in resectable EGFR mutation positive lung cancer with sector sequencing for biomarker discovery (PROGRESS) [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT02804776. [百度学术]
ClinicalTrials. Berberine in the first-line treatment of lung adenocarcinoma with EGFR mutation (Geber) [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT03486496. [百度学术]
ClinicalTrials. ASK120067 versus gefitinib as first-line treatment for EGFRm locally advanced or metastatic NSCLC [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT04143607. [百度学术]
ClinicalTrials. A phase I dose escalation study of erlotinib in combination with theophylline [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT02080078. [百度学术]
ClinicalTrials. Study of ixazomib and erlotinib in solid tumors [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT02942095. [百度学术]
ClinicalTrials. Low dose daily erlotinib in combination with high dose twice weekly erlotinib in patients with EGFR-Mutant lung cancer [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT01967095. [百度学术]
ClinicalTrials. To evaluate the efficacy of afatinib in the treatment of locally advanced/metastatic non-small cell lung cancer with NRG1 fusion [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT04814056. [百度学术]
ClinicalTrials. Gilotrif (afatinib) in advanced non-small cell lung cancer patients pre-treated with erlotinib or gefitinib [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT02747953. [百度学术]
ClinicalTrials. Dry pleurodesis with talcum and afatinib is used to treat patients with non-small cell lung carcinoma (DPTA) [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT03827070. [百度学术]
ClinicalTrials. Phase I trial of afatinib (BIBW 2992) and dasatinib in non-small cell lung cancer (NSCLC) [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT01999985. [百度学术]
ClinicalTrials. AFAMOSI: Efficacy and safety of afatinib followed by osimertinib compared to osimertinib in patients with EGFRmutated/T790M mutation negative nonsquamous NSCLC [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT04413201. [百度学术]
ClinicalTrials. Almonertinib versus osimertinib in the patients with EGFR mutations in advanced NSCLC with brain metastases (ATTACK) [EB/OL].https://clinicaltrials.gov/ct2/show/NCT04870190. [百度学术]
ClinicalTrials. Osimertinib plus bevacizumab in untreated EGFR Exon21 L858R mutated NSCLC [EB/OL]. https://clinicaltrials.gov/ct2/show/NCT04988607. [百度学术]
CANON J, BRYANT R, ROUDIER M, et al. Inhibition of RANKL increases the anti-tumor effect of the EGFR inhibitor panitumumab in a murine model of bone metastasis [J]. Bone, 2010, 46(6): 1613-1619. DOI: 10.1016/j.bone.2010.03.001. [百度学术]
ZHANG X R, SICLARI V A, LAN S H, et al. The critical role of the epidermal growth factor receptor in endochondral ossification [J]. J Bone Miner Res, 2011, 26(11): 2622-2633. DOI: 10.1002/jbmr.502. [百度学术]
SUN H, WU Y, PAN Z Y, et al. Gefitinib for epidermal growth factor receptor activated osteoarthritis subpopulation treatment [J]. EBioMedicine, 2018, 32: 223-233. DOI: 10.1016/j.ebiom.2018.06.002. [百度学术]
HOU W T, XIE X Q, LUO Y, et al. Long-term survival case of a non-small cell lung cancer bone metastasis patient treated with bone cement, radiation and gefitinib [J]. Eur Rev Med Pharmacol Sci, 2021, 25(6): 2542-2547. DOI: 10.26355/eurrev_202103_25417. [百度学术]
LIU G Q, XIE Y H, SU J W, et al. The role of EGFR signaling in age-related osteoporosis in mouse cortical bone [J]. FASEB J, 2019, 33(10): 11137-11147. DOI: 10.1096/fj.201900436RR. [百度学术]
WEBER B Z C, AGCA S, DOMANIKU A, et al. Inhibition of epidermal growth factor receptor suppresses parathyroid hormone-related protein expression in tumours and ameliorates cancer-associated cachexia [J]. J Cachexia Sarcopenia Muscle, 2022, 13(3): 1582-1594. DOI: 10.1002/jcsm.12985. [百度学术]
HUANG S M, YANG J J, CHEN H J, et al. Epidermal growth factor receptor is associated with the onset of skeletal related events in non-small cell lung cancer [J]. Oncotarget, 2017, 8(46): 81369-81376. DOI: 10.18632/oncotarget.18759. [百度学术]
KNIGHT C, JAMES S, KUNTIN D, et al. Epidermal growth factor can signal via β-catenin to control proliferation of mesenchymal stem cells independently of canonical wnt signaling [J]. Cell Signal, 2019, 53: 256-268. DOI: 10.1016/j.cellsig. 2018.09.021. [百度学术]
ZHANG X R, TAMASI J, LU X, et al. Epidermal growth factor receptor plays an anabolic role in bone metabolism in vivo [J]. J Bone Miner Res, 2011, 26(5): 1022-1034. DOI: 10.1002/jbmr.295. [百度学术]
MEEDENDORP A D, ELST ATER, 'T HART N A, et al. Response to HER2 inhibition in a patient with brain metastasis with EGFR TKI acquired resistance and an HER2 amplification [J]. Front Oncol, 2018, 8: 176. DOI: 10.3389/fonc. 2018.00176. [百度学术]
IHN H J, KIM J A, BAE Y C, et al. Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways [J]. BMB Rep, 2017, 50(3): 150-155. DOI: 10.5483/bmbrep.2017.50.3.223. [百度学术]
CHEN Y C, TSAI M J, LEE M H, et al. Lower starting dose of afatinib for the treatment of metastatic lung adenocarcinoma harboring exon 21 and exon 19 mutations [J]. BMC Cancer, 2021, 21(1): 495. DOI: 10.1186/s12885-021-08235-3. [百度学术]
LEE A M C, BOWEN J M, SU Y W, et al. Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats [J]. J Cell Biochem. 2019, 120(3): 4180-4191. DOI: 10.1002/jcb.27705. [百度学术]
CRUZ-RAMOS M, ZAMUDIO-CUEVAS Y, MEDINA-LUNA D, et al. Afatinib is active in osteosarcoma in osteosarcoma cell lines [J]. J Cancer Res Clin Oncol, 2020, 146(7): 1693-1700. DOI: 10.1007/s00432-020-03220-y. [百度学术]
REMON J, STEUER C E, RAMALINGAM S S, et al. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients [J]. Ann Oncol, 2018, 29(suppl_1): i20-i27. DOI: 10.1093/annonc/mdx704. [百度学术]
LU Y J, BIAN D L, ZHANG X L, et al. Inhibition of Bcl-2 and Bcl-xL overcomes the resistance to the third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer [J]. Mol Med Rep, 2021, 23(1): 48. DOI: 10.3892/mmr.2020.11686. [百度学术]
HIGUCHI T, SUGISAWA N, PARK J H, et al. Osimertinib regressed an EGFR-mutant lung-adenocarcinoma bone-metastasis mouse model and increased long-term survival [J]. Transl Oncol, 2020, 13(10): 100826. DOI: 10.1016/j.tranon. 2020.100826. [百度学术]
GEN S, TANAKA I, MORISE M, et al. Clinical efficacy of osimertinib in EGFR-mutant non-small cell lung cancer with distant metastasis [J]. BMC Cancer, 2022, 22(1): 654. DOI: 10.1186/s12885-022-09741-8. [百度学术]
ZHANG Y, ZHANG X W, WANG F, et al. High quality of 58-month Life in lung cancer patient with brain metastases sequentially treated with gefitinib and osimertinib [J]. Open Med (Wars), 2021, 16(1): 1602-1607. DOI: 10.1515/med-2021-0379. [百度学术]
TAMIYA M, FUJIKAWA K, SUZUKI H, et al. Classification and regression tree for estimating predictive markers to detect T790M mutations after acquired resistance to first line EGFR-TKI: HOPE-002 [J]. Invest New Drugs, 2022, 40(2): 361-369. DOI: 10.1007/s10637-021-01203-5. [百度学术]
SUBRAMANIAN G, KASHIKAR S, FITZHUGH V, et al. Osimertinib and jaw osteonecrosis? A case report [J]. Int J Cancer, 2019, 145(7): 2003-2005. DOI: 10.1002/ijc.32399. [百度学术]
LEE A M C, BOWEN J M, SU Y W, et al. Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats [J]. J Cell Biochem, 2019, 120(3): 4180-4191. DOI: 10.1002/jcb.27705. [百度学术]
ZHOU S, ZHENG F, ZHAN C G. Clinical data mining reveals analgesic effects of lapatinib in cancer patients [J]. Sci Rep, 2021, 11(1): 3528. DOI: 10.1038/s41598-021-82318-w. [百度学术]
OZGEN M, KOCA S S, KARATAS A, et al. Lapatinib ameliorates experimental arthritis in rats [J]. Inflammation, 2015, 38(1): 252-259. DOI: 10.1007/s10753-014-0028-6. [百度学术]
WESTOVER D, ZUGAZAGOITIA J, CHO B C, et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors [J]. Ann Oncol, 2018, 29(suppl_1): i10-i19. DOI: 10.1093/annonc/mdx703. [百度学术]
ZHOU H X, FU H H, LIU H, et al. Uncovering the mechanism of drug resistance caused by the T790M mutation in EGFR kinase from absolute binding free energy calculations [J].Front Mol Biosci, 2022, 9: 922839. DOI: 10.3389/fmolb.2022. 922839. [百度学术]
PENG H G, CHEN B F, HUANG W, et al. Reprogramming tumor-associated macrophages to reverse EGFR T790M resistance by dual-targeting codelivery of gefitinib/vorinostat [J]. Nano Lett, 2017, 17(12): 7684-7690. DOI: 10.1021/acs.nanolett.7b03756. [百度学术]
WANG S L, WANG Y Q, HUANG Z, et al. Stattic sensitizes osteosarcoma cells to epidermal growth factor receptor inhibitors via blocking the interleukin 6-induced STAT3 pathway [J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(12): 1670-1680. DOI: 10.1093/abbs/gmab146. [百度学术]
YANG X B, GAO Y, LIU Q, et al. Zoledronic acid re‑sensitises gefitinib‑resistant lung cancer cells by inhibiting the JAK/STAT3 signalling pathway and reversing epithelial‑mesenchymal transition [J]. Oncol Rep, 2021, 45(2): 459-468. DOI: 10.3892/or.2020.7881. [百度学术]
MIAO X D, CAO L, ZHANG Q, et al. Effect of PI3K-mediated autophagy in human osteosarcoma MG63 cells on sensitivity to chemotherapy with cisplatin [J]. Asian Pac J Trop Med, 2015, 8(9): 731-738. DOI: 10.1016/j.apjtm.2015.07.024. [百度学术]
NISHIO M, SETO T, RECK M, et al. Ramucirumab or placebo plus erlotinib in EGFR-mutated, metastatic non-small-cell lung cancer: east asian subset of RELAY [J]. Cancer Sci, 2020, 111(12): 4510-4525. DOI: 10.1111/cas.14655. [百度学术]
ALQOSAIBI A I, ABDEL-GHANY S, AL-MULHIM F, et al. Vorinostat enhances the therapeutic potential of erlotinib via MAPK in lung cancer cells [J]. Cancer Treat Res Commun, 2022, 30: 100509. DOI: 10.1016/j.ctarc.2022.100509. [百度学术]
DONG J K, LEI H M, LIANG Q, et al. Overcoming erlotinib resistance in EGFR mutation-positive lung adenocarcinomas through repression of phosphoglycerate dehydrogenase [J]. Theranostics, 2018, 8(7): 1808-1823. DOI: 10.7150/thno. 23177. [百度学术]
HUANG C Y, WANG L, FENG C J, et al. Bisphosphonates enhance EGFR-TKIs efficacy in advanced NSCLC patients with EGFR activating mutation: a retrospective study [J]. Oncotarget, 2016, 7(41): 66480-66490. DOI: 10.18632/oncotarget.5515. [百度学术]
ZHANG G W, CHENG R R, ZHANG Z L, et al. Bisphosphonates enhance antitumor effect of EGFR-TKIs in patients with advanced EGFR mutant NSCLC and bone metastases [J]. Sci Rep, 2017, 17(7): 42979. DOI: 10.1038/srep42979. [百度学术]
YU H A, ARCILA M E, REKHTMAN N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers [J]. Clin Cancer Res, 2013, 19(8): 2240-2247. DOI: 10.1158/1078-0432.CCR-12-2246. [百度学术]
CAMPO M, GERBER D, GAINOR J F, et al. Acquired resistance to first-line afatinib and the challenges of prearranged progression biopsies [J]. J Thorac Oncol, 2016, 11(11): 2022-2026. DOI: 10.1016/j.jtho.2016.06.032. [百度学术]
GOLDBERG S B, REDMAN M W, LILENBAUM R, et al. Randomized trial of afatinib plus cetuximab versus afatinib alone for first-line treatment of EGFR-mutant non-small-cell lung cancer: final results from SWOG S1403 [J]. J Clin Oncol, 2020, 38(34): 4076-4085. DOI: 10.1200/JCO.20.01149. [百度学术]
CHIU T H, LIN C Y, HSIEH M H, et al. Prognostic factors in lung adenocarcinoma with bone metastasis treated with EGFR-TKIs [J]. Medicina (Kaunas), 2021, 57(9): 967. DOI: 10.3390/medicina57090967. [百度学术]
ZHAO T N, SIU I M, WILLIAMSON T, et al. AZD8055 enhances in vivo efficacy of afatinib in chordomas [J]. J Pathol, 2021, 255(1): 72-83. DOI: 10.1002/path.5739. [百度学术]
LA MONICA S, CRETELLA D, BONELLI M, et al. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines [J]. J Exp Clin Cancer Res, 2017, 36(1): 174. DOI: 10.1186/s13046-017-0653-7. [百度学术]
HUANG Y H, GAN J D, GUO K B, et al. Acquired BRAF V600E mutation mediated resistance to osimertinib and responded to osimertinib, dabrafenib, and trametinib combination therapy [J]. J Thorac Oncol, 2019, 14(10): e236-e237. DOI: 10.1016/j.jtho.2019.05.040. [百度学术]
XIE Z H, GU Y Y, XIE X H, et al. Lung adenocarcinoma harboring concomitant EGFR mutations and BRAF V600E responds to a combination of osimertinib and vemurafenib to overcome osimertinib resistance [J]. Clin Lung Cancer, 2021, 22(3): e390-e394. DOI: 10.1016/j.cllc.2020.06.008. [百度学术]
LIU Z W, GAO W M. Synergistic effects of Bcl-2 inhibitors with AZD9291 on overcoming the acquired resistance of AZD9291 in H1975 cells [J]. Arch Toxicol, 2020, 94(9): 3125-3136. DOI: 10.1007/s00204-020-02816-0. [百度学术]
COOPER O, BONERT V S, RUDNICK J, et al. EGFR/ErbB2-targeting lapatinib therapy for aggressive prolactinomas [J]. J Clin Endocrinol Metab, 2021, 106(2): e917-e925. DOI: 10.1210/clinem/dgaa805. [百度学术]
BRADY S W, ZHANG J, SEOK D, et al. Enhanced PI3K p110α signaling confers acquired lapatinib resistance that can be effectively reversed by a p110α-selective PI3K inhibitor [J]. Mol Cancer Ther, 2014, 13(1): 60-70. DOI: 10.1158/1535-7163.MCT-13-0518. [百度学术]
VÁZQUEZ-MARTÍN A, OLIVERAS-FERRAROS C, DEL BARCO S, et al. mTOR inhibitors and the anti-diabetic biguanide metformin: new insights into the molecular management of breast cancer resistance to the HER2 tyrosine kinase inhibitor lapatinib (Tykerb) [J]. Clin Transl Oncol, 2009, 11(7): 455-459. DOI: 10.1007/s12094-009-0384-0. [百度学术]
NI J W, CHEN K, ZHANG J D, et al. Inhibition of GPX4 or mTOR overcomes resistance to lapatinib via promoting ferroptosis in NSCLC Cells [J]. Biochem Biophys Res Commun, 2021, 567: 154-160. DOI: 10.1016/j.bbrc.2021.06.051. [百度学术]
ZHANG R H, QIAO H Y, CHEN S N, et al. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS [J]. Cancer Biol Ther, 2016, 17(9): 925-934. DOI: 10.1080/15384047.2016.1210728. [百度学术]
WANG Q Z, LIU J Y, GUO T, et al. Epidermal growth factor reverses the inhibitory effects of the bisphosphonate, zoledronic acid, on human oral keratinocytes and human vascular endothelial cells in vitro via the epidermal growth factor receptor (EGFR)/Akt/Phosphoinositide 3-Kinase (PI3K) signaling pathway [J]. Med Sci Monit, 2019, 25: 700-710. DOI: 10.12659/MSM.911579. [百度学术]
刘道城.Wnt/β-连环蛋白与甲状旁腺激素信号通路在小鼠骨修复早期中的作用[D].重庆:中国人民解放军陆军军医大学, 2019. [百度学术]